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Abstract It is well known that there are the black hole
horizon and the cosmological horizon for the Reissner–
Nordström–de Sitter (RN-dS) spacetime. The thermody-
namic quantities on the both horizons satisfy the first law
of the black hole thermodynamics, respectively; moreover,
there are some additional connections between them. In this
paper by considering the relations between the two horizons
we give the effective thermodynamic quantities in (n + 2)-
dimensional RN-dS spacetime. The thermodynamic proper-
ties of these effective quantities are analyzed; moreover, the
critical temperature, critical pressure, and critical volume are
obtained. We carry out an analytical check of the Ehrenfest
equations and prove that both Ehrenfest equations are satis-
fied. So the spacetime undergoes a second-order phase tran-
sition at the critical point. This result is consistent with the
nature of a liquid–gas phase transition at the critical point,
hence deepening the understanding of the analogy of charged
dS spacetime and liquid–gas systems.

1 Introduction

Black hole physics, specially black hole thermodynamics,
refers to the theories of gravity, statistical mechanics, parti-
cle physics and field theory and so on. Thus it has received
a lot of attention [1–6]. Although the statistical explanation
of the thermodynamic states of the black holes is still lack,
the properties of the black hole thermodynamics are worth
studying deeply, such as the Hawking–Page phase transition
[7], the critical phenomena of the black holes. More interest-
ingly, recently through the study of RN-anti-de Sitter (AdS)
black hole it is shown that there exists a similar phase tran-
sition to the one in the van der Waals–Maxwell vapor–liquid
system [8,9].
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Motivated by the AdS/CFT correspondence [10], where
the transitions have been related with the holographic super-
conductivity [11,12], the subject of the phase transitions of
the black holes in asymptotically AdS spacetime has received
considerable attention [13–17]. The underlying microscopic
statistical interaction of the black holes is also expected to
be understood via the study of the gauge theory living on the
boundary in the gauge/gravity duality.

Recently, by considering the cosmological constant cor-
responding to pressure in a general thermodynamic system,
namely

P = − 1

8π
� = 3

8π

1

l2 , (1.1)

the thermodynamic volumes in AdS and dS spacetime are
obtained [18–24]. The studies on phase transition of the black
holes have aroused great interest [16,25–42]. Connecting the
thermodynamic quantities of AdS black holes to (P ∼ V ) in
the ordinary thermodynamic system, the critical behaviors of
the black holes can be analyzed and the phase diagram like
van der Waals vapor–liquid system can be obtained. This
helps to further understand the black hole entropy, tempera-
ture, heat capacities, etc. It also has very much significance
in completing the geometric theory of black hole thermody-
namics.

As is well known, there are black hole horizons and the
cosmological horizons in the appropriate range of parameters
for a de Sitter spacetime. Both horizons have thermal radi-
ation, but with different temperatures. The thermodynamic
quantities on both horizons satisfy the first law of thermody-
namics, and the corresponding entropy fulfills the area for-
mula [22,43,44]. In recent years, the research on the thermo-
dynamic properties of de Sitter spacetime has drawn much
attention [16,22,43–48]. In the inflation epoch of the early
universe, the universe is a quasi-de Sitter spacetime. The cos-
mological constant introduced in de Sitter space may come
from the vacuum energy, which is also a kind of energy. If
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the cosmological constant is the dark energy, the universe
will evolve to a new de Sitter phase. To depict the whole his-
tory of the evolution of the universe, we should have some
knowledge of the classical and quantum properties of de Sit-
ter space [22,44,49,50].

Firstly, we expect the thermodynamic entropy to satisfy
the Nernst theorem [45,47,51]. At present a satisfactory
explanation to the problem that the thermodynamic entropy
of the horizon of the extreme de Sitter spacetime does not
fulfill the Nernst theorem is still lacking. Secondly, when
considering the correlation between the black hole horizon
and the cosmological horizon one wonders whether the ther-
modynamic quantities in de Sitter spacetime still have the
phase transition and critical behavior like in AdS black holes.
Thus it is worthy of a deep investigation and of our reflec-
tion to establish a consistent thermodynamics in a de Sitter
spacetime.

Because the thermodynamic quantities on the black hole
horizon and the cosmological one in de Sitter spacetime are
functions of mass M , electric charge Q, and the cosmological
constant �. The quantities are not independent from each
other. Considering the relation between the thermodynamic
quantities on the two horizons is very important for studying
the thermodynamic properties of a de Sitter spacetime. Based
on the relation we give the effective temperature and pressure
of the (n + 2)-dimensional Reissner–Nordström–de Sitter
(RN-dS) spacetime and analyze the critical behavior of the
effective thermodynamic quantities.

The paper is arranged as follows: in Sect. 2 we introduce
the (n + 2)-dimensional RN-dS spacetime, and give the two
horizons and corresponding thermodynamic quantities. In
Sect. 3 by considering the relations between the two hori-
zons we obtain the effective temperature and the equivalent
pressure; in Sect. 4 the critical phenomena of effective ther-
modynamic quantities is discussed; to investigate the nature
of the phase transition at the critical point, we will intro-
duce the classical Ehrenfest scheme and carry out an ana-
lytical check of both equations in Sect. 5. Finally we dis-
cuss and summarize our results in Sect. 6. (We use the units
Gn+1 = h̄ = kB = c = 1.)

2 RN-dS spacetime

The line element of (n + 2)-dimensional RN-dS black holes
is given by [43]

ds2 = − f (r)dt2 + f −1dr2 + r2d�2
n, (2.1)

where

f (r) = 1 − ωn M

rn−1 + nω2
n Q2

8(n − 1)r2n−2 − 2�

n(n + 1)
r2,

ωn = 16π

nV ol(Sn)
= 8�

( n+1
2

)

nπ
n−1

2

, (2.2)

in which Q is the electric/magnetic charge of the Maxwell
field, � > 0 is for the de Sitter case, � < 0 is for AdS. For

general M and Q, l =
√

n(n+1)
2�

is the curvature radius of dS

space, Vol(Sn) denotes the volume of a unit n-sphere d�2
n ,

the equation f (r) = 0 may have four real roots when the
parameters M, Q, l satisfy a condition [52]. Three of them
are positive: the largest one is the cosmological event horizon
(CEH), r = rc, the smallest is the inner (Cauchy) horizon of
the black hole, the middle one is the outer horizon (black
hole event horizon, BEH) r = r+ of the black hole. We have

d�2
n = dχ2

2 + sin2 χ2
2 dχ2

3 + · · ·
n∏

i=2

sin2
i dχ2

n+1.

The equations f (r+) = 0 and f (rc) = 0 are rearranged to

Q2 = 8(n − 1)(r+rc)
n−1

nω2
n

(

1− 2(rn+1
c −rn+1+ )

n(n+1)(rn−1
c −rn−1+ )

�

)

,

2�

n(n + 1)
=
(

1− nω2
n Q2

8(n−1)(rcr+)n−1

)(
rn−1

c −rn−1+
rn+1

c −rn+1+

)

,

(2.3)

ωn M = (rn−1
c + rn−1+ ) − 2�(r2n

c − r2n+ )

n(n + 1)(rn−1
c − rn−1+ )

= (rn−1
c + rn−1+ ) − (r2n

c − r2n+ )

(rn+1
c − rn+1+ )

×
(

1 − nω2
n Q2

8(n − 1)(rcr+)n−1

)
= (rcr+)n−1(r2

c − r2+)

(rn+1
c − rn+1+ )

+ (r2n
c − r2n+ )

(rn+1
c − rn+1+ )

nω2
n Q2

8(n − 1)(rcr+)n−1 . (2.4)

The surface gravities at the black hole horizon and the cos-
mological horizon are, respectively,

κ+ = 1

2

d f (r)

dr

∣∣∣
∣
r=r+

= 1

2r+

(

(n − 1)− 2�

n
r2+− nω2

n Q2

8r2n−2+

)

,

(2.5)

κc = 1

2

d f (r)

dr

∣∣
∣∣
r=rc

= 1

2rc

(
(n − 1) − 2�

n
r2

c − nω2
n Q2

8r2n−2
c

)
.

(2.6)

The thermodynamic quantities corresponding to the two hori-
zons satisfy the first law of thermodynamics, respectively
[22,44,53,54],

δM = κ+
2π

δS+ + 
+δQ + V+δP, (2.7)

δM = κc

2π
δSc + 
cδQ + VcδP, (2.8)
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where

S+ = rn+Vol(Sn)

4G
, V+ = Vol(Sn)

n + 1
rn+1+ ,


+ = n

4(n − 1)

ωn Q

rn−1+
, Sc = rn

c Vol(Sn)

4G
,

Vc = Vol(Sn)

n + 1
rn+1

c , 
c = − n

4(n − 1)

ωn Q

rn−1
c

,

P = − n�

16π
. (2.9)

3 Thermodynamic quantity of RN-dS spacetime

In the above section, we have obtained thermodynamic quan-
tities without considering the relationship between the black
hole horizon and the cosmological horizon. Because there are
three variables, M , Q, and �, in the spacetime, the thermody-
namic quantities corresponding to the black hole horizon and
the cosmological horizon are functions with respect to M , Q,
and �. The thermodynamic quantities corresponding to the
black hole horizon are related to the ones corresponding to
the cosmological horizon. When the thermodynamic prop-
erty of the charged de Sitter spacetime is studied, we must
consider the relationship with the two horizons. Recently,
by studying Hawking radiation of de Sitter spacetime, in
[55,56] it is found that the outgoing rate of the charged de
Sitter spacetime which radiates particles with energy ω is

� = e�S++�Sc , (3.1)

where �S+ and �Sc are the Bekenstein–Hawking entropy
differences corresponding to the black hole horizon and the
cosmological horizon after the charged de Sitter spacetime
radiated particles with energy ω. Therefore, the thermody-
namic entropy of the charged de Sitter spacetime is the sum of
the black hole horizon entropy and the cosmological horizon
entropy,

S = S+ + Sc. (3.2)

Substituting Eqs. (2.7) and (2.8) into Eq. (3.2), we get

dS = 2π

(
1

κ+
+ 1

κc

)
dM − nπωn Q

2(n − 1)

×
(

1

rn−1+ κ+
+ 1

rn−1
c κc

)

dQ

+ Vol(Sn)

4(n + 1)

(
rn+1+
κ+

+ rn+1
c

κc

)

d�. (3.3)

For simplicity, we set a fixed Q. In this case the above equa-
tion turns into

dS = 2π

(
1

κ+
+ 1

κc

)
dM+ Vol(Sn)

4(n + 1)

(
rn+1+
κ+

+ rn+1
c

κc

)

d�.

(3.4)

From Eqs. (2.3), (2.4), (2.5), and (2.6) one can obtain

drc = 1

2κc

(
ωnd M

rn−1
c

− nω2
n QdQ

4(n − 1)r2n−2
c

+ 2r2
c

n(n + 1)
d�

)
,

dr+ = 1

2κ+

(
ωndM

rn−1+
− nω2

n QdQ

4(n − 1)r2n−2+
+ 2r2+

n(n + 1)
d�

)

.

(3.5)

Recently, in [22] the thermodynamic volume of the higher-
dimensional RN-dS black hole was given as

V = Vol(Sn)

n + 1

(
rn+1

c − rn+1+
)

. (3.6)

Substituting Eq. (3.5) into Eq. (3.6), one can get

dV = ωnVol(Sn)

2

(
rc

κc
− r+

κ+

)
dM

+ Vol(Sn)

n(n + 1)

(
rn+2

c

κc
− rn+2+

κ+

)

d�

−2πωn Q

(n − 1)

(
1

rn−2
c κc

− 1

rn−2+ κ+

)

dQ. (3.7)

Substituting Eq. (3.7) into Eq. (3.3), one can obtain the ther-
modynamic equation for the thermodynamic quantities of
higher-dimensional RN-dS black holes [45]:

dM = Teff dS − Peff dV + ϕeff dQ, (3.8)

where

Teff = B1

4πrcx(1 + x)
+ nω2

n Q2 B2

32πr2n−1
c (n − 1)x2n−1(1 + x)

,

(3.9)

Peff = B3

16πr2
c x(1+x)

+ n2ω2
n Q2 B4

16 × 8π(n−1)r2n
c x2n−1(1 + x)

,

(3.10)

ϕeff = nωn Q

4(n − 1)

(1 − x2n)

rn−1
c xn−1(1 − xn+1)

, (3.11)

and

(1−xn+1)B1 =n(1−x2)(1+xn+1)−(1+x2)(1−xn+1),

(1−xn+1)B2 =(1−x2n)(1+xn+1)−n(1+x2n)(1−xn+1),

(1 − xn+1)2 B3 = n[n(1 − x2)(1 + x2n+1)

−(1 + x2)(1 − x2n+1) + 2xn+1(1 − x)],
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(1 − xn+1)2 B4 = 2nxn+1(1 − x2n−1)

−(n − 1)(1 − x4n+1) − (n + 1)x2n(1 − x). (3.12)

We have x := r+/rc and 0 < x < 1.1 The thermodynamic
quantities defined in Eqs. (3.9), (3.10), and (3.11) meet the
thermodynamic equation (3.8). When x → 1, namely, the
two horizons coincide,

Peff → 0,

Teff → (n − 1)

4πrc(n + 1)
− n2ω2

n Q2

32πr2n−1
c (n + 1)

= 1

4πrc(n + 1)

(
2r2

c � − (n − 1)2
)

. (3.13)

In this case, from Eqs. (2.3) and (2.4), we have

Q2 = 8(n − 1)r2(n−1)
c

nω2
n

(
1 − 2r2

c

n(n − 1)
�

)
,

ωn M = 2rn−1
c − 4rn+1

c �

(n + 1)(n − 1)
. (3.14)

Due to Q2 ≥ 0, we have M ≥ 0, thus 2r2
c �

n(n−1)
≤ 1.

When M2 = Q2, from Eq. (3.14) one can obtain

2r2
c � = (n + 1)(n − 1)

n2 (1 +
√

1 + n3(n − 2)). (3.15)

Specifically, in a four-dimensional spacetime this black hole
becomes the so-called lukewarm black hole, for which the
temperature of the black hole horizon is equal to the one
of the cosmological horizon and is nonzero. Thus, in this
case the spacetime is in thermal equilibrium with a common
temperature.

When M2 ≥ Q2, there should be a relation 2r2
c � ≥

(n+1)(n−1)

n2 (1 +√
1 + n3(n − 2)). In Fig. 1, we show

(n + 1)(n − 1)

n2 (1 +
√

1 + n3(n − 2)) ≥ (n − 1)2. (3.16)

According to Eq. (3.13), Teff > 0, which fulfills the stabil-
ity condition of thermodynamic system. However, the prob-
lem of considering the black hole horizon and the cosmo-
logical one as independent from each other is that, when the
two horizons coincide, namely κ+ = κc = 0, the tempera-
ture on the black hole horizon and the cosmological horizon
are both zero, but both horizons have a nonzero area, which
means that the entropy for the two horizons should not be
zero. The total entropy should be

S = S+ + Sc = 2S+ = 2Sc.

1 It should be noted that the parameters M, Q, l should satisfy a con-
dition to guarantee four real roots to exist. Under the condition, the x
here cannot tend to zero.

1

n2
n2 1 1 1 n3 n 2

n 1 2

2 4 6 8 10
n

20

40

60

80

Fig. 1 The plot to verify the effective temperature Teff > 0

This conclusion is inconsistent with the Nernst theorem. In
this case the volume–thermodynamic system becomes an
area–thermodynamic one. According to Eq. (3.13) the pres-
sure of the thermodynamic membrane is zero, but the temper-
ature of the thermodynamic membrane is nonzero. This can
partly solve the problem that extreme de Sitter black holes
do not satisfy the Nernst theorem. When n = 2, Eqs. (3.9)
and (3.10) return to the well-known result.

4 Phase transition in charged dS black hole spacetime

The investigation on the phase transition of the black holes
has aroused much interest. In particular, the critical behaviors
of some black holes in asymptotically AdS space are similar
to the ones of the van der Waals equation [16–19,23–26]. For
black holes in dS space there exists more than one horizon and
the multiple horizons correspond to different thermodynamic
systems. Thus they are generally non-equilibrium systems.
The research on the phase transition of this kind of non-
equilibrium system is sparse. Based on the above section, we
analyze the phase transition of a higher-dimensional RN-dS
black hole. Firstly, we compare the effective thermodynamic
quantities of a higher-dimensional RN-dS black hole with
the van der Waals equation. Secondly, we will discuss the
critical behaviors of thermodynamic quantities of the RN-dS
black hole at constant temperature. Finally, the nature of the
phase transition by Ehrenfest’s equations will be analyzed.

Comparing with the van der Waals equation

(
P + a

v2

)
(v − b) = kT, (4.1)

here, v = V/N is the specific volume of the fluid, P its
pressure, T its temperature, and k is the Boltzmann con-
stant. From Eq. (4.1) one can depict the P–v curves for fixed
T . Employing the conditions and the equations the critical
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Table 1 Numerical solutions for xc, rc
c , T c

eff , Pc
eff , vc, V c, Mc, Sc and Gc for given values of Q = 1, 3, 10 and spacetime dimension n = 3, 4, 5,

respectively

n = 3 n = 4 n = 5

Q = 1 Q = 3 Q = 10 Q = 1 Q = 3 Q = 10 Q = 1 Q = 3 Q = 10

xc 0.769263 0.769263 0.769263 0.798722 0.798722 0.798722 0.821785 0.821785 0.821785

rc
c 1.61337 2.79444 5.10192 1.31405 1.89519 2.83103 1.21688 1.60151 2.16396

T c
eff 0.030460 0.017586 0.009232 0.047178 0.032711 0.021898 0.057924 0.044013 0.032573

Pc
eff 0.008375 0.002791 0.000837 0.022521 0.010827 0.004852 0.038737 0.022365 0.012249

vc 0.372263 0.644779 1.1772 0.264489 0.381459 0.569823 0.216866 0.285412 0.385648

V c 21.7266 195.54 2, 172.66 13.9192 86.8592 646.071 11.6117 60.336 367.193

Mc 1.26609 3.79828 12.6609 1.38401 4.15202 13.8401 1.51006 4.5319 15.1006

Sc 30.1578 156.705 953.675 27.6023 119.428 594.674 28.436 112.272 505.672

Gc 0.52945 1.58835 5.2945 0.395263 1.18579 3.95263 0.312726 0.938178 3.12726

points satisfied, one can derive the critical temperature, the
critical pressure and the critical volume. To compare with
the van der Waals equation, we set Peff → P and dis-
cuss the phase transition and critical phenomena when Q is
invariant.

Substituting Eq. (3.9) into Eq. (3.10), we have

Peff = Teff
B4

2rc B2
+ B2 B3 − B1 B4

8πr2
c x(1 + x)B2

, (4.2)

in which x is a dimensionless parameter. We take the specific
volume of the higher-dimensional RN-dS spacetime as

v = rc(1 − x). (4.3)

According to
(

∂ Peff

∂v

)

Teff

= 0,

(
∂2 Peff

∂v2

)

Teff

= 0, (4.4)

we can calculate the position of the critical points.
Here we take Q = 1, 3, 10, respectively, and calculate the

various quantities at the critical points in different spacetime
dimensions (n = 3, 4, 5). The results are shown in Table 1.

According to the above calculations, the position xc of the
critical point of the higher-dimensional RN-dS black holes
is independent of the electric charge. However, it is rele-
vant to the dimension of spacetime and increases with the
dimension. The position of the critical cosmological horizon
rc

c increases with the electric charge Q for fixed spacetime
dimension, and it decreases with the increase of the spacetime
dimension for a fixed electric charge. Both the critical effec-
tive temperature T c

eff and the critical effective pressure Pc
eff

decrease with the increase of the electric charge Q for fixed
spacetime dimension, and they increase with the spacetime
dimension for a fixed electric charge. The critical specific
volume vc increases with the increase of the electric charge

Q for fixed spacetime dimension, and it decreases with the
spacetime dimension for a fixed electric charge.

In order to describe the relation of Peff and v in the vicinity
of critical temperature, we plot the curves of Peff –v at dif-
ferent temperatures. For the sake of brevity, we only depict
the curves for the n = 5 case. In the cases with n = 3, 4 the
behaviors are similar.

From Fig. 2, when the effective temperature Teff > T c
eff ,

the stable condition
(

∂ P
∂v

)
Teff

< 0 can be satisfied. In the case
of Teff < T c

eff , only when the value of v is large, the stable
condition

(
∂ P
∂v

)
Teff

< 0 can be satisfied. When the system

lies at a small v,
(

∂ P
∂v

)
Teff

> 0, thus the system is unstable.
So a phase transition may occur only at Teff = T c

eff .

5 Analytical check of the classical Ehrenfest equations
in the extended phase space

According to Ehrenfest’s classification, when the chemical
potential and its first derivative are continuous, whereas the
second derivative of chemical potential is discontinuous, this
kind of phase transition is called the second-order phase tran-
sition. For a van der Waals system there is no latent heat and
the liquid–gas structure does not change suddenly at the crit-
ical point. Therefore this kind of phase transition belongs
to the second-order phase transitions and continuous phase
transitions. Below we will discuss the behaviors of a higher-
dimensional RN-dS system near the phase transition point.

We can calculate the specific heat of RN-dS system at con-
stant pressure CP , the volume expansivity β, and the isother-
mal compressibility κ ,

CP = Teff

(
∂S

∂Teff

)

Peff

= −Teff
∂2G

∂T 2
eff

= Vol(Sn)rn−1
c

4
nTeff
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Fig. 2 The Peff –v curves for Q = 1, 3, 10, respectively. From top to the bottom the curves correspond to the effective temperature T c
eff + 0.02,

T c
eff + 0.01, T c

eff , T c
eff − 0.01 and T c

eff − 0.02. a Q = 1, b Q = 3 and c Q = 10
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Fig. 3 CP –x curves for RN-dS black hole with n = 5 corresponding to the critical effective pressure Pc
eff = 0.038737, Pc

eff = 0.022365 and
Pc

eff = 0.012249, respectively. a Q = 1, b Q = 3 and c Q = 10

×
⎛

⎜
⎝

rc(1 + xn−1)
(

∂ Peff
∂rc

)

x
− (1 + xn)

(
∂ Peff
∂x

)

rc(
∂Teff
∂x

)

rc

(
∂ Peff
∂rc

)

x
−
(

∂Teff
∂rc

)

x

(
∂ Peff
∂x

)

rc

⎞

⎟
⎠ , (5.1)

β = 1

v

(
∂v

∂Teff

)

Peff

= 1

v

∂2μ

∂Teff∂ Peff

= −1

v

⎛

⎜
⎝

rc

(
∂ Peff
∂rc

)

x
+ (1 − x)

(
∂ Peff
∂x

)

rc(
∂Teff
∂x

)

rc

(
∂ Peff
∂rc

)

x
−
(

∂Teff
∂rc

)

x

(
∂ Peff
∂x

)

rc

⎞

⎟
⎠ , (5.2)

κ = −1

v

(
∂v

∂ Peff

)

Teff

= −1

v

∂2μ

∂ P2
eff

= −1

v

⎛

⎜
⎝

rc

(
∂Teff
∂rc

)

x
+ (1 − x)

(
∂Teff
∂x

)

rc(
∂ Peff
∂rc

)

x

(
∂Teff
∂x

)

rc
−
(

∂ Peff
∂x

)

rc

(
∂Teff
∂rc

)

x

⎞

⎟
⎠ , (5.3)

where S = Vol(Sn)
4 rn

c (1 + xn).
We also depict the curves of CP –x , β–x and κ–x in Figs.

3, 4, and 5, respectively. From these curves, we find that for
the specific heat of the higher-dimensional RN-dS system at
constant pressure CP , the expansion coefficient β, and the

compressibility κ there exists an infinite peak. The curves of
S–x and G–x in Figs. 6 and 7 show that the Gibbs function
G and the entropy S are both continuous at the critical point.
According to Ehrenfest, the phase transition of the higher-
dimensional RN-dS black hole should be a second-order one,
which is similar to the four-dimensional case.

Ehrenfest’s equations (slope formulas) for RN-dS black
holes are

(
∂ Peff

∂Teff

)

S
= C2

P − C1
P

vcT c
eff(β2 − β1)

= �CP

vcT c
eff�β

, (5.4)

(
∂ Peff

∂Teff

)

v

= β2 − β1

κ2
T − κ1

T

= �β

�κT
, (5.5)

in which the subscript 1 and 2 represent phase 1 and 2, respec-
tively.

From the Maxwell relation

(
∂v

∂S

)

P
=
(

∂T

∂ P

)

S
(5.6)
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Fig. 4 β–x curves for RN-dS black hole with n = 5 corresponding to the critical effective pressure Pc
eff = 0.038737, Pc

eff = 0.022365, and
Pc

eff = 0.012249, respectively. a Q = 1, b Q = 3 and c Q = 10
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Fig. 5 κ–x curves for RN-dS black hole with n = 5 corresponding to the critical effective temperature T c
eff = 0.057924, T c

eff = 0.044013, and
T c

eff = 0.032573, respectively. a Q = 1, b Q = 3 and c Q = 10

and Eqs. (5.4), we have

[(
∂ Peff

∂Teff

)

S

]c

=
[(

∂S

∂v

)

Peff

]c

; (5.7)

thus

�CP

T c
effv

c�β
=
[(

∂S

∂v

)

Peff

]c

. (5.8)

Note that the footnote “c” denotes the values of physical
quantities at the critical point throughout. Here

(
∂S

∂v

)

Peff

=
⎛

⎜
⎝

(
∂S
∂x

)
rc

(
∂ Peff
∂rc

)

x
−
(

∂S
∂rc

)

x

(
∂ Peff
∂x

)

rc
(

∂v
∂x

)
rc

(
∂ Peff
∂rc

)

x
−
(

∂v
∂rc

)

x

(
∂ Peff
∂x

)

rc

⎞

⎟
⎠ .

(5.9)

From the Maxwell relation
(

∂v

∂S

)

T
=
(

∂T

∂ P

)

v

, (5.10)

and Eqs. (5.5), one gets

�β

�κT
=
(

∂v

∂S

)c

Teff

, (5.11)

here

(
∂S

∂v

)

Teff

=
⎛

⎜
⎝

(
∂S
∂x

)
rc

(
∂Teff
∂rc

)

x
−
(

∂S
∂rc

)

x

(
∂Teff
∂x

)

rc
(

∂v
∂x

)
rc

(
∂Teff
∂rc

)

x
−
(

∂v
∂rc

)

x

(
∂Teff
∂x

)

rc

⎞

⎟
⎠ .

(5.12)

According to Eq. (5.2), when rc

(
∂Teff
∂rc

)

x
+(1−x)

(
∂Teff
∂x

)

rc
�=

0, the critical points satisfy

(
∂ Peff

∂rc

)

x

(
∂Teff

∂x

)

rc

−
(

∂ Peff

∂x

)

rc

(
∂Teff

∂rc

)

x
= 0. (5.13)

Substituting Eq. (5.13) into Eq. (5.12) and comparing with
Eq. (5.9), we have
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Fig. 6 S–T curves for RN-dS black hole with n = 5 corresponding to the critical effective pressure Pc
eff = 0.038737, Pc

eff = 0.022365 and
Pc

eff = 0.012249, respectively. a Q = 1, b Q = 3 and c Q = 10
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Fig. 7 G–T curves for RN-dS black hole with n = 5 corresponding to the critical effective pressure Pc
eff = 0.038737, Pc

eff = 0.022365 and
Pc

eff = 0.012249, respectively. Here the Gibbs free energy G = M − Teff S − ϕeff Q. a Q = 1, b Q = 3 and c Q = 10

(
∂S

∂v

)c

Teff

=
(

∂S

∂v

)c

Peff

. (5.14)

So far, we have proved that both the Ehrenfest equations
are correct at the critical point. Utilizing Eq. (5.14), the
Prigogine–Defay (PD) ratio (�) can be calculated as

� = �C p�κT

T c
effv

c(�β)2 = 1. (5.15)

Hence the phase transition occurring at Teff = T c
eff is a

second-order equilibrium transition. This is true in spite of
the fact that the phase transition curves are smeared and
divergent near the critical point. This result is in agree-
ment with the one in [16,35,37–40] as regards AdS black
holes.

6 Conclusions

After introducing the connection between the thermody-
namic quantities corresponding to the black hole horizon

and the cosmological horizon, we give the effective thermo-
dynamic quantities of the higher-dimensional RN-dS sys-
tem, (3.9), (3.10), and (3.11). When describing the higher-
dimensional RN-dS system by the effective thermodynamic
quantities, it exhibits a similar phase transition to van der
Waals equation. In Sect. 4 it is shown that the position x
of the phase transition point in the higher-dimensional RN-
dS system is irrelevant to the electric charge of the system.
This indicates that for fixed charge when the ratio of the
black hole horizon and the cosmological horizon is xc, the
second-order phase transition will occur. There are some
differences between the higher-dimensional RN-dS black
hole and the charged AdS black hole. According to the
isothermal curves of the van der Waals equation and charged
AdS black holes when the temperature is lower than the
critical one there exist two different phases for some val-
ues of the volume, namely coexistence region. From Fig.
2, for the higher-dimensional RN-dS black hole no two-
phase region exists for any temperature. When the effec-

tive temperature Teff > T c
eff ,

(
∂ Peff
∂v

)

Teff
< 0, satisfying

the stable condition. When Teff < T c
eff , at some intervals
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the isothermal curve corresponds to
(

∂ Peff
∂v

)

Teff
> 0. This

time the system is unstable. The states with
(

∂ Peff
∂v

)

Teff
> 0

turn up at small value of v with v = rc(1 − x), namely
at some interval of x with larger values. This means that
when the both horizons approach, the system lies at a non-
equilibrium state. Therefore, for the higher-dimensional RN-
dS black hole the state with coincided horizons does not
exist.

In Sect. 5 we analyzed the phase transition of a higher-
dimensional RN-dS system. It shows that at the critical point
the specific heat at constant pressure, the volume expansivity
β and the isothermal compressibility κ of the RN-dS system
exist infinite peak, while the entropy and the Gibbs poten-
tial G are continuous. Therefore for the phase transition of
the RN-dS system no latent heat and no specific volume
changes suddenly, it belongs to the second-order phase tran-
sition. This result is the same as that of the RN-AdS black
hole [38,57,58]. In fact, one can also introduce a “thermally
opaque” membrane [45,50,59] between the black hole hori-
zon and the cosmological horizon to construct two different
thermal equilibrium states. The two states satisfy Eqs. (2.7)
and (2.8), respectively, thus each may behave like a RN-
AdS black hole system. Phase transitions studied in this way
should be similar to the results obtained according to the
effective equilibrium temperature approach.

We carry out an analytical check of the Ehrenfest equa-
tions and prove that both Ehrenfest equations are satisfied.
This result is consistent with the nature of a liquid–gas phase
transition at the critical point, hence deepening the under-
standing of the analogy of RN-dS spacetime and liquid–gas
systems.
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