
Eur. Phys. J. C (2014) 74:3007
DOI 10.1140/epjc/s10052-014-3007-z

Regular Article - Theoretical Physics

New class of rotating perfect fluid black holes in three dimensional
gravity

Bin Wu1,a, Wei Xu1,2,b

1 School of Physics, Nankai University, Tianjin 300071, China
2 School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

Received: 21 April 2014 / Accepted: 27 July 2014 / Published online: 12 August 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We obtain a new class of rotating black holes
for Einstein theory with perfect fluid source in (2 + 1)

dimensions. We conclude that these black hole solutions only
depend on the variable of the angular velocity m(r). Some
examples of these black holes are given explicitly. In partic-
ular, an unknown static black hole in this special background
is obtained. In addition, the general properties including the
horizon structure, energy conditions and equation of state,
mass, and angular momentum are explained in detail.

1 Introduction

Exact solutions of the Einstein field equations have attracted
considerable attention since General relativity had been pro-
posed, especially for cases with a matter source. As the equa-
tions in the presence of matter are very complicated, to find
exact solutions, a popular simplifying assumption has to be
imposed: the requirement that the matter field is a perfect
fluid. We find that spacetime with perfect fluid source can
be always considered as the interior spacetime of the black
hole. The most famous example is the Schwarzschild inte-
rior solution. Furthermore, the spacetime with a perfect fluid
source is a good laboratory for testing some fundamental
ideas which may apply to spacetime with other matter fields.
The latest example is the application of holography in fluid
dynamics, in which for any spherically symmetric black hole
spacetime with a perfect fluid source, a dual hydrodynamics
on a hypersurface near the black hole horizon can be estab-
lished [1]. It is thus necessary to find the perfect fluid solu-
tions, especially for the black hole solutions. Unfortunately,
even with this specific assumption, very few solutions are
found. In order to get rid of the difficulty, several papers
investigated the situation when the spacetime is spherically
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symmetric [2–6]. People also pay some attentions to ‘static’
cylindrically symmetry solutions [7,8]. The solutions in the
modified gravity are shown in [9,10], which correspond to
f (R) gravity and massive gravity, respectively. In this paper,
we will focus on rotating perfect fluid black holes in three
dimensional gravity. This is not actually a new idea. In fact
four dimensional rotating perfect fluid solutions in axially
symmetric-cylindrical coordinates were well known 30 years
ago [11]. We aim at three dimensional gravity as it is often
invoked in the study of AdS/CFT duality [12,13] and black
hole physics. The general rotating solution for Einstein grav-
ity with a perfect fluid source and cosmological constant in
(2 + 1)-dimensions is obtained in [14]. Since we are inter-
ested in the three dimensional rotating perfect fluid black
hole solutions, we will revisit this general rotating solution
in a different gauge, based on which we will show a new class
of black holes and their properties.

The paper is organized as follows: we revisit the general
three dimensional rotating perfect fluid solution in a different
gauge in next section. In Sect. 3, we obtain a new class of per-
fect fluid black hole solutions and their physical properties,
including the geometric quantities, and an unknown special
degenerated static black hole. Mass and angular momentum
of the black hole are also discussed. Finally we conclude by
pointing out some interesting future tasks.

2 General rotating perfect fluid solution in three
dimensions revisited

In this section, we revisit the general rotating perfect fluid
solution [14] in a different gauge. In some of the pub-
lications in order to find perfect fluid solutions [3,5,9],
the Oppenheimer–Volkoff equation [15], i.e., the energy-
momentum conservation, has been used. While we prefer
solving the Einstein field equation directly in our case, since
the energy-momentum is automatically conserved. We begin
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with the Einstein equations with a source term

Gμν = Rμν − 1

2
Rgμν = −�gμν + κTμν,

where Gμν is the Einstein tensor, Tμν is the stress-energy-
momentum tensor and � = − 1

�2 is the (bare) cosmological
constant. Here, we force the cosmological constant to be neg-
ative, for the reason that smooth black hole horizons in three
dimensions can exist only in the presence of a negative cos-
mological constant [16]. In the following discussion, we will
set the gravitational constant κ = 1 for convenience.

We are interested in the perfect fluid solutions, the stress-
energy-momentum tensor can be written as

Tμν = (ρ(r) + p(r))uμuν + p(r)gμν,

where uμ is the proper velocity. We also assume that both the
the energy density ρ(r) and the fluid pressure p(r) depend
only on the radial coordinate r . One can further assume that
there exists a relation between ρ and p,

f (ρ, p) = 0, (1)

called the equation of state.
To obtain a rotating solution, we begin with the following

general metric ansatz:

ds2 = − f (r)dt2 + 1

g(r)
dr2 + r2(dθ − m(r)dt)2, (2)

where the coordinate ranges are given by −∞ < t < ∞, r ≥
0,−π ≤ θ ≤ π and m(r) is the angular velocity. Firstly, we
calculate a few lines to get the proper velocity of the perfect
fluid in the above spacetime. If we set xμ = (x0, x1, x2) =
(t, r, θ), the components of the proper velocity are

uμ = d xμ

d τ
=

(
1√
f (r)

, 0,
m(r)√

f (r)

)
.

We can also find it through using the Killing vector field K μ,
which is proportional to the proper velocity uμ, i.e. uμ =
1
V K μ. Here K μ = (1, 0, m(r)) is a linear combination of
Killing vector field (∂t )

μ and rotational Killing vector field
(∂θ )

μ, and V = √−K μKμ = 1√
f (r)

is the red-shift factor.
Given the definition for the equation array

Eqμ
ν ≡ Gμ

ν − T μ
ν − 1

�2 gμ
ν = 0, (3)

the Einstein equations for the metric (2) can be found explic-
itly and listed in the appendix because of their complicated
forms. In addition, there are continuity equation and con-
served equations for energy-momentum stress tensor of the
perfect fluid, i.e.

∇μ(ρuμ) = 0,

∇μT μν = 0.

In our case, the continuity equation is always satisfied, and
only the r -component of the conserved equations is non-
vanishing, as is shown below

g(ρ fr + p fr + 2 pr f ) = 0, (4)

where pr and fr represent the first derivative respect with r
of p(r) and f (r).

Solving the Eqt
θ component of Eq. (3), i.e. Eq. (A2), one

arrives at

g = c0

mr
2r6 f, (5)

where c0 is an integration constant. Without loss of gener-
ality, we can assume c0 = 1 in the rest of the paper. The
other choices that c0 is arbitrary constant can be recovered
by rescaling the t coordinate, i.e. f → f

c0
, t → c0t .

Then taking the combination of Eqt
t , Eqr

r and Eqθ
t com-

ponents of Eq. (3), i.e. Eqs. (A1), (A2), (A3), one obtains
another relationship about the function f (r), g(r) and m(r).
This relationship together with Eq. (5) give rise to

2 r3mr
3 + 4 mr fr + rmr,r fr − fr,r rmr = 0,

which yields

f =
∫ (

2
∫

mr

r2 dr + c1

)
r4mr dr + c2, (6)

with c1 and c2 being integration constants.
Finally, the other components of Eqs. (3) and (5) are used

to derive the energy density ρ(r) and pressure p(r)

p(r) = � + r3mr
2g + 2 fr g

4r f
, (7)

ρ(r)=−�+ 4 gr f mr,r + 12 g f mr − r4mr
3g − 2 grmr fr

4r2 f mr
,

(8)

which show that the conserved equation Eq. (4) is satisfied
automatically.

Then we get the general rotating perfect fluid solution [14]
in a different gauge, where the metric is (2), f (r) behaves
as Eq. (6), g(r) behaves as Eq. (5) with an arbitrary angular
velocity m(r), and the perfect fluid source is characterized
by the pressure p(r) given in Eq. (8), density ρ(r) shown in
Eq. (7). One need note that the uncertainly of angular velocity
m(r) is bare, actually the uncertainly of solution is emerged
from the density ρ(r), namely from the matter source. Hence
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this uncertainly is behoove appears, if no extra constraint con-
dition is imposed. The same phenomenon also happens in the
study of all three dimensional static circularly symmetric per-
fect fluid solutions [3]. However, for physically conceivable
solutions, one of the energy conditions for pressure p(r) and
density ρ(r) must be satisfied at least. Simultaneously, the
choice of ρ(r) is restricted by physically reasonable matter
distributions.

Now let us go back to the function f (r). If we con-
sider a vanishing perfect fluid matter distribution, namely
the p(r) = 0, ρ(r) = 0 limit of the above general solution,
one find that c1 and c2 are related to cosmological constant
� = − 1

�2 and the black hole mass M via

c1 = − a

�2 , c2 = −M,

in which case the solution degenerates into three dimensional
black hole in the pure gravity with a negative cosmological
constant, i.e. the BTZ black hole. Here a is the rotating factor
in the angular velocity m(r) = a

r2 of BTZ black hole [17].

Similar to c0 we can choose c1 = − 1
�2 = �, while the other

choices can be recovered by rescaling the θ coordinate, i.e.
θ → aθ .

3 New class of three dimensional rotating perfect fluid
black hole solutions

In this section, we aim to obtain a new rotating perfect fluid
black hole. It is worth mentioning that the general rotating
perfect fluid solutions characterized by Eqs. (5–7) with vari-
able density ρ(r) have only two parameters, i.e. c1 and c2

from f (r). In order to get some concrete and new exact black
holes with all the functions being analytic expressions, espe-
cially for f (r), one can begin with a concrete fluid matter
with a known ρ(r). However, this is not a usual way, since a
concrete and physically reasonable fluid is always interpreted
as matter fields, such as Maxwell fields [18,19], scalar fields
[20–24], higher rank tensor fields [25–27] and higher curva-
ture terms [28–31]. However, throughout the paper, we focus
our attention on the pure fluid matter rather than the known
ones. That is a method totally different compared with the
conventional studies.

As shown in the above section, the solution only depends
on one arbitrary function, which calls for an extra constraint
in the solution. In [14], people assume that the perfect fluid
rotating solutions have known equation of state (i.e. Eq. (1)),
such as the linear law p = ωρ and polytropic law p =
Cργ . This is the most popular extra input to find perfect fluid
solution. Again, a BTZ black hole can be obtained as a special
branch of the case of a linear law, which is out of our interest.
Actually, one does not need to add such an extra constraint

in our case, because there is a natural and intrinsic constraint
on the angular velocity m(r), i.e. its asymptotic behavior at
r → +∞ goes as

m(r)|r→+∞ = 0, (9)

after removing the global rotations of the coordinate system.
One can naturally propose a finite-polynomial solution,

mn(r) = a
n∑

i=2

ai r−i , (10)

where −n is the lowest power of r in mn(r), and the highest
power must be −2, in order to include the well-known BTZ
black hole as a simplified limit of (10). After inserting the
angular velocity, one can get f (r) from Eq. (6), g(r) from
Eq. (5), p(r) from Eq. (8), and ρ(r) from Eq. (7), and all
the five functions make up a new exact perfect fluid solution,
which is a black hole as will be shown later. The same phe-
nomenon that derives rotating hairy solutions with an infinite
asymptotic behavior as Eq. (9) happens in [24], whose angu-
lar velocity belongs to the subcase with n = 3 appearing
in Eq. (10). This method is different from that in [14]. The
interesting point here is that the equation of state is a derived
object rather than an extra input, once Eq. (10) is imposed.
Therefore one can say that this new class of rotating per-
fect fluid black hole solutions are more “general” and they
depend on the angular velocity m(r) with an infinite asymp-
totic behavior as Eq. (9).

However, one can expect that the other functions ( f (r),

g(r), p(r), ρ(r)) of this new class of black hole have com-
plicated forms, which makes people unable to explore their
properties, especially for the perfect fluid source. Hence, in
the next subsection, we will show a simple example with
n = 3 of this class of black hole, which is the next order of
the simplest one (the BTZ black hole for n = 2). Based on
this example, we will give an overview of its properties. One
can also generalize this study to the general class of the black
holes by adapting the same procedure.

Now we focus on the case with n = 3, i.e. m3(r) =
a(a2r−2 + a3r−3). This kind of angular velocity is different
from the case of pure three dimensional gravity (the case for
n = 2). We can find a similar case in [24], which shows a
rotating hairy black hole. The parameter a2 is related to the
pure gravity, and a3 is related to the scalar field. Without loss
of generality, we choose the same angular velocity

m(r) = a(3 r + 2 B)

r3 , (11)

in order to find the physical meaning of the parameters in our
case comparing with [24]. Here a is chosen to be positive,
while the negative side can be recovered by the coordinate
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transformation of θ , i.e. θ → −θ . Thus Eqs. (5–7) show the
other structural functions of this solution as follows:

f (r) = r2

�2 + 2Br

�2 − M + 9a2
(

1

r2 + 6B

5r3 + 2B2

5r4

)
,

(12)

g(r) = r2

(r + B)2 f (r), (13)

p(r) = B(9 a2�2 − 5 r4)

5�2r4(r + B)
, (14)

ρ(r) = B(B2 + M�2)

(r + B)3 �2 − 9Ba2(6 r2 + 8 Br + 3 B2)

5 r4(r + B)3 ,

(15)

where the constants M and a are associated with the con-
served charges mass and angular momentum, respectively,
and B characterizes the property of the perfect fluid source in
some sense. Equations (2–15) constitute a full set of an exact
new three dimensional perfect fluid solution. In the next sub-
section, we will mainly focus our attention on the physical
properties of this solution, to gain a further understanding.

3.1 Geometric quantities

As we are interested in three dimensional black hole solu-
tions, we need to calculate some of the associated geometric
quantities to further characterize the geometry of the solu-
tions. First of all, the Ricci scalar

R = 2B M

(r + B)3 − 18Ba2(8 r2 + 12 Br + 5 B2)

5r4(r + B)3

− 2r(3 r2 + 7 Br + 5 B2)

(r + B)3�2 , (16)

which corresponds to two curvature singularities at r = 0 and
r = −B if a 	= 0, B 	= 0, while it has only one at r = −B
if a = 0, B 	= 0 and no singularity in the case B = 0.
The singularities of higher order curvature invariants such
as Rμν Rμν and Rμνρσ Rμνρσ have a similar behavior. We
can conclude that the corresponding solution is a black hole
solution if there is a singularity with a round horizon. The
classification of singularities gives a clue for searching for
some special cases of this perfect fluid black hole solution.

The Cotton tensor is defined as

Cμνσ = ∇σ Rμν − ∇ν Rμσ + 1

4
(∇ν Rgμσ − ∇σ Rgμν).

For our solution, there are some non-vanishing components
of the Cotton tensor; we only list a simple one below:

Cθθr = 27(10 r3 + 20 Br2 + 15 r B2 + 4 B3)Ba2

10r3(r + B)4

− 3B Mr2

2(r + B)4 − 3B3r2

2(r + B)4�2 .

When B 	= 0, the non-vanishing Cotton tensor signifies that
the metric is not conformally flat [32].

3.2 Unknown static degenerated cases

When a = 0, the solution degenerates into an unknown static
perfect fluid black hole, which reads

f (r) = r2

�2 + 2Br

�2 − M,

g(r) = r2

(r + B)2 f (r),

p(r) = − B

(r + B)�2 ,

ρ(r) = B(M�2 + B2)

�2(r + B)3 ,

and the Ricci scalar Eq. (16) degenerates to

R = 2B M

(r + B)3 − 2r(3 r2 + 7 Br + 5 B2)

(r + B)3�2 ,

which shows a curvature singularity located in r = −B. The
possible range of the radial coordinate r is thus corrected to
r > −B according to the existence of singularity.1 The black
hole has a horizon located in

r0 = −B +
√

B2 + M�2,

while another solution of f (r) = 0, i.e. r = −B −√
B2 + M�2 is out of the radial coordinate ranges and is

discarded. We find that the existence of black hole horizons
imposes a lower bound for the mass parameter M , which
reads

M > − B2

�2 . (17)

When M = − B2

�2 , the horizon is located in r = −B and the
curvature singularity at r = −B will be naked, which is not
physically interesting. One can see that the pressure p(r) and
density ρ(r) are also singular in r = −B. Furthermore, one
can easily find these relations

ρp < 0, ρ + p = −B

(r + B)3 f (r), (18)

1 One can also choose the r < −B side.
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which show that when B > 0, all energy conditions fail.
When B < 0, the null energy condition (NEC) and strong
energy condition (SEC)

ρ + p > 0, ρ + 3p > 0, (19)

hold in the static region of the spacetime, i.e. r > r0. How-
ever, the weak and dominant energy conditions still fail as
ρ > 0 and ρ > |p|. For the general rotating perfect fluid
black hole characterized by Eqs. (11–15), these two equa-
tions, (18) and (19), always hold. That to say, in order to sat-
isfy the null energy condition (NEC) and the strong energy
condition (SEC) in the static region, B < 0 should be neces-
sary (it works with B > 0 if we choose the radial coordinate
range as r < −B). Therefore, in the following discussion,
we always choose B < 0.

Finally the parameters in the fluid can be further reduced
when we solve ρ(r) and p(r) simultaneously,

ρ + �4(B2 + M�2)

B2 p3 = 0. (20)

Equation (20) is exactly the same as the polytropic law
p = Cργ with γ = 1

3 . Therefore, we prove the fact that
the equation of state is a derived object. Here, the parame-
ter B characterizes the equation of state of the perfect fluid
source. Though this equation of state shows a negative energy
density, Eq. (19) tell us that it does not violate any reason-
able energy condition, as the null energy condition (NEC)
and strong energy condition (SEC) are satisfied in the static
region of the spacetime. Back to the rotating black hole, one
can follow the same procedure to find its equation of state in
principle, which is a little complicated.

3.3 Mass and angular momentum

In this subsection, we present the formulas for calculating the
mass and angular momentum shown by Brown–York [33–
35]. Using this formalism, one can obtain the quasi-local
energy G(r) at a radial boundary r

G(r) = 2(
√

g0(r) − √
g(r)),

and the quasi-local angular momentum j (r)

j (r) = −r3

√
g(r)

f (r)

∂m(r)

∂r
.

In our case, g0(r) = r2

�2 is the background metric function.
The quasi-local mass F(r) is given by

F(r) = G(r)
√

f (r) − j (r)m(r).

Then the mass and angular momentum are defined and cal-
culated to be

E ≡ F(+∞) = M + B2

�2 ,

J ≡ j (+∞) = 6a,

respectively. One can note that E > 0 is consistent with
the horizon condition for a degenerated static black hole, i.e.
Eq. (17).

4 Conclusion

In this paper, we obtain a new class of rotating black holes
for Einstein theory with a perfect fluid source in (2 + 1)

dimensions without extra constraints, such as the equation
of state. In a sense, one can say that this new class of rotat-
ing perfect fluid black hole solutions are more “general” and
depend on the variable of the angular velocity m(r), which is
a finite-polynomial solution resulting from a vanishing infi-
nite asymptotic behavior as shown in Eq. (9). Some examples
of these black holes are shown. Their physical properties are
presented as well, such as the geometric quantities. The cor-
responding degenerated unknown static black hole is shown
with its horizon structure, energy conditions, and equation of
state. Especially for the last two, one can find that the param-
eter B appearing in the angular velocity m(r) is negative (in
the r > −B case) and it characterizes the equation of state
of the perfect fluid source. Mass and angular momentum of
the black hole are also discussed.

For different angular velocity mn(r), one can follow the
same procedure to get new rotating black holes. Meanwhile,
the corresponding new static black holes can be obtained as
the vanishing angular momentum limit of the rotating ones.
Note that the physical solutions can be chosen by the energy
conditions. One can expect that there are interesting proper-
ties of these black holes as regards their complicated forms.
Usually people use the energy-momentum tensor directly to
solving the Einstein equation in the presence of a known mat-
ter field source. In this sense, we consider this method as a
new way to search the black hole solutions in the presence
of an unknown matter field source. There remain some other
interesting problems for further study: the physical interpre-
tation for the perfect fluid source and thermodynamics for
the perfect fluid solutions [39–42]. An effective way is their
Lagrange and Hamiltonian description [36–38].
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Appendix

The Einstein equations (2) with cosmological constant and
perfect fluid source for metric (3) are explicitly listed below:

Eqt
t = 1

4 f 2r
(gr3 f mr

2 + grr3 f mmr + 6 gr2 f mmr

− gr3 fr mmr + 2 gr3 f mmr,r + 2 gr f 2

+ 4 f 2ρ r + 4 � r f 2), (A1)

Eqt
θ = r

4 f 2 (grmr fr − grr f mr − 6 g f mr − 2 gr f mr,r ),

(A2)

Eqr
r = 1

4 f 2 (r3mr
2g + 2 fr g − 4 pr f + 4 � r f ), (A3)

Eqθ
t = − 1

4 f 2r
(gr3 fr m2mr + mgrr f fr + 2 mgr f fr,r

− mgr fr
2 + f grmr fr − 2 gr3 f m2mr,r

− 6 gr2 f m2mr − grr3 f m2mr − 4 f gr3mr
2m

− grr f 2mr − 2 gr f 2m − 6 g f 2mr − 4 m f 2ρ r

− 2 gr f 2mr,r − 4 prm f 2), (A4)

Eqθ
θ = − 1

4 f 2 (r2mgr f mr − r2mgmr fr + 6 rmg f mr

+ 2 r2mg f mr,r + 3 gr2 f mr
2 + g fr

2 − 2 g f fr,r

− gr f fr + 4 p f 2 − 4 � f 2), (A5)

where mr , pr , and fr represent the first derivative for r,
mr,r is second derivative and so on.
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