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Abstract In this paper we study scalar perturbations of the
metric for nonlinear f(R) models. We consider the Universe
at the late stage of its evolution and deep inside the cell of
uniformity. We investigate the astrophysical approach in the
case of Minkowski spacetime background and two cases in
the cosmological approach, the large scalaron mass approx-
imation and the quasi-static approximation, getting explicit
expressions for scalar perturbations for both these cases. In
the most interesting quasi-static approximation, the scalar
perturbation functions depend on both the nonlinearity func-
tion f(R) and the scale factor a. Hence, we can study the
dynamical behavior of the inhomogeneities (e.g., galaxies
and dwarf galaxies) including into consideration their gravi-
tational attraction and the cosmological expansion, and also
taking into account the effects of nonlinearity. Our investiga-
tion is valid for functions f(R) which have stable de Sitter
points in future with respect to the present time, which is
typical for the most popular f(R) models.

1 Introduction

Modern observational phenomena, such as dark energy and
dark matter, are the great challenge for present cosmology,
astrophysics and theoretical physics. Within the scope of
standard models, a satisfactory explanation to these prob-
lems has not been offered yet. This forces the search of their
solutions beyond the standard models, for example, by con-
sidering modified gravitational theories. One of the possible
generalizations consists in consideration of nonlinear (with
respect to the scalar curvature R) models f(R). Nonlinear
models may arise either due to quantum fluctuations of mat-
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ter fields including gravity [1], or as a result of compact-
ification of extra spatial dimensions [2]. Starting from the
pioneering paper [3], the nonlinear theories of gravity f(R)
have attracted a great deal of interest because these models
can provide a natural mechanism of the early inflation. It
was also realized that these models can explain the late-time
acceleration of the Universe. This fact resulted in a new wave
of papers devoted to this topic (see, e.g., the reviews [4-9]).

The cosmological perturbation theory is very important
for the current cosmological investigations of the large-scale
structure. Thus, it would be interesting to make the corre-
sponding cosmological perturbation analysis in nonlinear
f(R) theories of gravity. In the hydrodynamical approach,
such investigation was performed in a number of papers (see,
e.g., Sec. 8 in the review [6] and references therein). In partic-
ular, matter density perturbations in a class of viable cosmo-
logical f(R) models were studied in [10,11]. We consider
the Universe at the late stage of its evolution when galaxies
and clusters of galaxies have already formed. At scales much
larger than the characteristic distance between these inhomo-
geneities, the Universe is well described by the homogeneous
and isotropic FRW metric. These scales are approximately
190 Mpc and larger [12]. At these distances, the matter fields
(e.g., cold dark matter) are well described by the hydrody-
namical approach. However, at smaller scales the Universe is
highly inhomogeneous, and we need to take into account the
inhomogeneities in the form of galaxies, groups and clusters
of galaxies. The peculiar velocities of these inhomogeneities
are much less than the speed of light, and we can use the non-
relativistic approximation. This means that in equations for
scalar perturbations we first neglect peculiar velocities and
solve these equations with respect to scalar perturbation func-
tions @ and W. The function & represents the gravitational
potential of the inhomogeneities. Then we use the explicit
expression for @ to describe the motion of inhomogeneities.
Such mechanical approach is well known in astrophysics (see
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e.g., [13]). We generalized it to the case of dynamical cosmo-
logical background [12,14]. In the case of the linear model
(i.e., the conventional ACDM model), we used this proce-
dure to describe the mutual motion of galaxies and dwarf
galaxies [14, 15]. Due to the great popularity of the nonlinear
f(R) models, it is of interest to apply this scheme to them.
Howeyver, first of all, we should show that nonlinear theories
are compatible with the mechanical approach. In other words,
we have to examine equations for scalar perturbations of the
metrics in nonlinear f(R) gravity within the framework of
the mechanical approach to show their integrability up to the
required accuracy. This is the main aim of our paper.

As a result, we demonstrate that considered in our
paper nonlinear theories are compatible with the mechanical
approach. We get the expressions for both ® and W in differ-
ent approximations. Moreover, the exact form of the gravi-
tational potential @ gives a possibility to take into account
both the effects of nonlinearity of the original model and the
dynamics of the cosmological background. The explicit form
of this function makes it possible to carry out analytical and
numerical study of mutual motion of galaxies in nonlinear
models. Therefore, our formulas can be used to analyze the
large-scale structure dynamics in the late Universe for non-
linear f(R) models. This is the main result of our paper.

The paper is structured as follows. In Sect. 2 we present the
main background equations as well as the equations for scalar
perturbations for an arbitrary f(R) model. Here the equations
for scalar perturbations are written within the framework of
the mechanical approach. In Sect. 3 we solve these equations
in three approximations: the astrophysical approach, the large
scalaron mass case and the quasi-static approximation. In all
three cases we obtain the expressions for the scalar pertur-
bation functions & and W up to the required accuracy. The
main results are summarized in concluding Sect. 4.

2 Basic equations

In this section we reproduce some known equations of the
nonlinear f(R) gravitational model that we will use here-
inafter. We follow mainly the review [6] using the notation
and the sign convention accepted in this paper. In f(R) grav-
ity, the action reads

§— 1
T k2

d*x /=g f(R) + Sp. 2.1

where f(R) is an arbitrary smooth function of the scalar
curvature R, S, is the action of matter, K2 = 871G N, and
Gy is the Newtonian gravitational constant. The equation of
motion corresponding to this action is (see e.g., Eq. 2.4 in

(6

@ Springer

1
F(R)Ryy — Ef(R)guv — VuVuF(R) + g,0wF(R)

=Ty p,v=0,1,23. (2.2)
The trace of this equation gives
30F(R) + F(R)R —2f(R) = «*T. (2.3)

Here, F(R) = f/(R) and T = g""T},,. Besides, OF =
(1//=8)3,(/—gg""9,F). In what follows, the prime
denotes the derivative with respect to the scalar curvature
R. In our paper we consider a special class of f(R) models
which have solutions Rgs of the equation

F(R)R —2f(R) =0. 2.4

As follows from Eq. (2.3), they are vacuum solutions (7T =
0) of this equation for which the Ricci scalar is constant
(OF(R) = 0). Such solutions are called de Sitter points
[6,16,17]. According to [18,19], viable nonlinear models
should have stable de Sitter points in the late Universe. We
can expand the function f(R) in the vicinity of one of these
points:

f(R) = f(Ras) + f'(Ras)(R — Rqs) + o(R — Rgs)

2f(R
— F(Rag) + 2L Ras) 12 ) R 4+ o(R — Ras),
ds

2.5)

where we used Eq. (2.4). Now, in order to have linear gravity
at the late stage of the Universe evolution [6], without loss
of generality we choose the parameters of the model in such
a way that

R R

oS Res) f(Rgg) = =3 2.6)
Ras

Therefore, we get

f(R)=—-2A+ R+ o(R — Ras), 2.7

where A = Rys/4. The stability of these points was dis-
cussed in [6,20]. Obviously, these models go asymptotically
to the de Sitter space when R — Rgs # 0 with a cos-
mological constant A = Rgs/4. This happens when the
matter content becomes negligible with respect to A as in
the late Friedman—Robertson—Walker (FRW) cosmology. We
can also consider a zero solution Rgs = 0 of Eq. (2.4). It is
more correct to call this point a Minkowski one. Here, A = 0,
and such models go asymptotically to the Minkowski space.
In particular, three popular models, Starobinsky [21], Hu—
Sawicki [22] and MJWQ [23], have stable nonzero de Sit-
ter points in future (approximately at the redshift z = —1)
[24,25]. The explicit search for dS points in both future and
past was considered in [17,26]. It is worth noting that in
papers [18,27] the authors point to the oscillating behavior
of the parameter of the equation of state near the value —1 in
the future. Moreover, the number of times of such oscillations
can be infinite [19].
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In the case of the spatially flat background spacetime with
the FRW metric

ds® = guudx’dx’ = —di* + a*(r) (dx2 +dy? + dz2>
(2.8)
and matter in the form of a perfect fluid with the energy-

momentum tensor components TF = diag(—p, P, P, }3),
Eq. (2.2) results in the following system:

3FH?>=(FR— f)/2—3HF +«*p, (2.9)
and
—2FH=F —HF +«*(p + P), (2.10)

where the bar denotes the homogeneous background quan-
tities, the Hubble parameter H = a/a (the dot everywhere
denotes the derivative with respect to the synchronous time
t) and the scalar curvature

R =6<2H2+H>. @2.11)
The perfect fluid satisfies the continuity equation
p+3H(p+ P) =0, (2.12)

which for nonrelativistic matter with P = 0 has the solution
p = pe/a, (2.13)

where p. = const is the rest mass density in the comoving
coordinates.

Above, Egs. (2.8)—(2.13) describe the homogeneous back-
ground. As we have written in the Sect. 1, we consider the
Universe at late stages of its evolution when galaxies and
clusters of galaxies have already formed and when the Uni-
verse is highly inhomogeneous inside the cell of unifor-
mity which is approximately 190 Mpc in size [12]. Obvi-
ously, these inhomogeneities perturb the homogeneous back-
ground. At scales larger than the cell of uniformity size, the
matter fields (e.g., cold dark matter) are well described by
the hydrodynamical approach. However, at smaller scales
the mechanical approach looks more adequate [12,14]. In
the framework of the mechanical approach galaxies, dwarf
galaxies and clusters of galaxies (composed of baryonic and
dark matter) can be considered as separate compact objects.
Moreover, at distances much greater than their characteristic
sizes they can be described well as point-like matter sources
with the rest mass density

1
p=—5 ) mibr—x) = pefa’, (2.14)
i

here r; is the radius-vector of the ith gravitating mass in the
comoving coordinates. This is the generalization of the well-
known astrophysical approach [13] to the case of dynamical
cosmological background. Usually, the gravitational fields
of these inhomogeneities are weak and their peculiar veloc-
ities are much less than the speed of light. All these inho-
mogeneities/fluctuations result in scalar perturbations of the
FRW metric (2.8). In the conformal Newtonian (longitudinal)
gauge, such perturbed metric is [6,28,29]

ds? = —(1 4 2®)d> + a*(1 — 20) (dx2 Fdy? + dzz> ,
2.15)

where the introduced scalar perturbations ®, W < 1. These
functions of all spacetime coordinates, representing devia-
tions of metric coefficients from their average/background
values, may be associated with famous Bardeen’s potentials
[28] under the made gauge choice. It is worth noting that
smallness of these nonrelativistic gravitational potentials
and W and smallness of peculiar velocities are two inde-
pendent conditions (e.g., for very light relativistic masses
the gravitational potential can still remain small). Therefore,
similar to the astrophysical approach described in [13] (see
§106), we split the investigation of galaxy dynamics in the
late Universe into two steps. First, we neglect peculiar veloc-
ities and define the gravitational potential ®. Then we use
this potential to determine dynamical behavior of galaxies.
It leads to a possibility to take into account both the grav-
itational attraction between inhomogeneities and the global
cosmological expansion of the Universe. For example, for
the linear model f(R) = R this procedure was performed
in [15]. Our present paper is devoted to the first step in this
program. In other words, we are going to define scalar pertur-
bations @, W for the f(R) gravitational models. Under our
assumptions and according to [6,30,31], these perturbations
satisfy the following system of equations:

AV .
——y +3H (H® + V)

1 .. A :
=———|(3H* +3H + — | 6F — 3HSF
a

2F
+3HFO +3F (HO + W) + K28,0:| , (2.16)
HO+ W = ﬁ(SF—HéF—FCD), (2.17)
—F(® — W) =§F, (2.18)
) .. . i AD
3(HO+ HO + W)+ 6H (HO + W) +3H® + —
a

1 . . 5 ASF ..
= —|38F+3HSF —6H§F — —— —3F®
2F a?

—3F(H® + W) — BHF +6F) @ + K25p:| , (2.19)
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ASF 1

8F +3HSF — —— — —RSF
a? 3

1 ) .
= §/<2(3p —38P)+ FGH® + 3W + d)

. L1
+2F® +3HF® — ~FSR, (2.20)
5F = F'SR, 3
SR = _2[3 (H®+ H® + W) + 12H (HD + V)
AD . AW
+— +3ch—2—2}. 2.21)
a a

In these equations the function F, its derivative F’ and the
scalar curvature R are unperturbed background quantities.
Here A is the Laplacian in the comoving coordinates. As a
matter source, we consider dust-like matter. Therefore, § P =
0 and

Sp=p—p=(pc— pc)/a, (2.22)
where p and p are defined in Egs. (2.13) and (2.14), respec-
tively.

It can easily be verified that in the linear case f(R) =
R = F(R) = 1 this system of equations is reduced to
Egs. (2.18)—(2.20) in [14].

3 Astrophysical and cosmological approaches
3.1 Astrophysical approach

First, we consider Egs. (2.16)—(2.21) in the astrophysical
approach. This means that we neglect the time dependence
of functions in these equations by setting all time derivatives
equal to zero. It is supposed also that the background model
is matter free, i.e., o0 = 0. As we mentioned above, there
are two types of vacuum background solutions of Eq. (2.3):
de Sitter spacetime with Rgs = 12H 2 — const # 0 and
Minkowski spacetime with R = 0, H = 0. However, the sys-
tem of Eqgs. (2.16)—(2.21) was obtained for the FRW metric
(2.15) where we explicitly took into account the dependence
of the scale factor a on time. Therefore, if we want to get
the time independent astrophysical equations directly from
Egs. (2.16)—(2.21), we should also neglect the time depen-
dence of a, i.e., the background Hubble parameter H = O.
This means that the background solution is the Minkowski
spacetime. This background is perturbed by dust-like matter
with the rest mass density Eq. (2.14). Keeping in mind that
p = 0, we have §p = p.

In the case of Minkowski spacetime background, dropping
the time derivatives, Eqs. (2.16)—(2.21) in the astrophysical
approach are reduced to the following system:

2y ! A<SF+ 25 (3.1)
JE = — | — K s .
a? 2F \ a2 P

@ Springer

— F(® — V) =6F, 3.2)
o= L (—L5r 442 (33)
a2 2F \ a2 ey '
Bk =125 Lrse (3.4)
- = —K —_ = N .
a2 35 P73
) A A
SF=F3R, R=-2|50-25V]). 3.5
a a
From Egs. (3.1) and (3.3) we obtain, respectively,
1 F’
v _—sr+ 2= " sr4+ %,
2F a 2F a (3.6)
LI S I |
- 2F a  2F a’
where the function ¢ satisfies the equation
1 1 447Gy
Ap = ﬁkza38p = ﬁl(zpc = 7 Pe- 3.7

Here, we took into consideration that in the astrophysical
approach dp, = p, where p. is defined by Eq. (2.14). It is
worth noting that in the Poisson equation (3.7) the Newtonian
gravitational constant Gy is replaced by an effective one
Geit = Gy/F.

Equation (3.2) follows directly from Eq. (3.6) and there-
fore may be dropped, while from Eq. (3.4) we get the follow-
ing Helmholtz equation with respect to the scalaron function
OR:

a’F a’F «?

ASR — —0R =

37 R = T3 P 69

On the other hand, it can easily be seen that the substitution of
Egs. (3.6) and (3.7) into Eq. (3.5) results in the same Eq. (3.8).
Therefore, in the case of Minkowski background, the mass
of the scalaron squared is

2
a- F
M= ——. 3.9
3 (3.9
A similar formula (up to the evident substitution ¢ = 1 and
the zero background scalar curvature) for the mass squared
can be found, e.g., in [32-35] (see also Eq. (5.2) in the review

[6]).
3.2 Cosmological approach

Now we want to take into consideration cosmological evo-
lution. This means that background functions may depend
on time. In this case it is hardly possible to solve the system
(2.16)—(2.21) directly. Therefore, first, we study the case of
the very large mass of the scalaron. It should be noted also that
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we investigate the Universe filled with nonrelativistic matter
with the rest mass density p ~ 1/a>. Hence, we will drop all
terms which decrease (with increasing a) faster than 1 /a3.
This is the accuracy of our approach. Within this approach,
sp ~ 1/a3 [14].

3.2.1 Large scalaron mass case

As we can see from Eq. (3.9), the limit of the large scalaron
mass corresponds to F' — 0. Then § F is also negligible [see
Eq. (2.21)]. Therefore, Egs. (2.16)—(2.21) read

AW .
—a—2+3H (H<D+\IJ)

1 . : ; 2
= —ﬁ[3HFd>+3F(H<I>+‘If) +i Sp], (3.10)
I T
H¢+\D=ﬁ(_F¢)f 3.11)
-V =0, (3.12)

. - : : A®
3(H<I>+H<I>+\IJ)+6H(H<I>+\IJ)+3HCD+a—2

1 .. ) .
=—| —3Fd—3F(H® + WV
2F[ (Ho + 1)
— (3HF +6F) q>+/<25p], (.13)
0=FQH®+3V+®)+2FO+3HFD
1, 1
—k%8p — —F3R, 3.14
+ 3P =3 (3.14)
1 i L. .
—§8R=3(H<I>+H<I>+\I’)+12H(H<D—|—lll)
AD i AW
+—5 +3H® —2—-. (3.15)
a a
From Egs. (3.11) and (3.12) we get
@
U=0oq= , (3.16)
av'F

where the introduced function ¢ depends only on spatial
coordinates. Substituting Eq. (3.16) into Eq. (3.10), we obtain

1 32 1

Agp + Q= —K2<S,o.
a3 F 4aF2\/f 2F

(3.17)

As we mentioned above, neglecting relativistic matter in
the late Universe, we have 8p ~ 1/a° [14]. This approx-
imation is getting better and better performed in the limit
a — +o00. We assume that this limit corresponds to the final
stage of the Universe evolution. The similar limit with respect
to the scalar curvature is R — R, where the value R is
just finite. Then from Eq. (3.17) we immediately come to the
condition

F = const + o(1), (3.18)

where o(1) is any decreasing (with increasing a) function
of a. This condition holds at the considered late stage. One
can also naively suppose that in the late Universe F ~
1/a 4 o(1/a). However, as we will see below, this is wrong.
Obviously, without loss of generality we can suppose that
const = 1. From the condition in Eq. (3.18) we get
F=140() = f=-2A+R+0(R—Rx), (3.19)
where A is the cosmological constant. Therefore, the limit
of the large scalaron mass takes place for models which pos-
sess the asymptotic form (3.19). For example, R, may corre-
spond to the de Sitter point Rgs in future [see Eq. (2.7)]. As we
have written in Sect. 2, all three popular models, Starobinsky
[21], Hu—-Sawicki [22] and MIJWQ [23], have such stable de
Sitter points in future (approximately at the redshift z = —1)
[24,25]. The condition of stability is 0 < RF'/F < 1
(see, e.g., (4.80) in [6]). Since F = 1, this condition reads
0 < R < 1/F’ which is fulfilled for the de Sitter points in
the above-mentioned models. The reason of it consists in the
smallness of F’.

‘We now return to the remaining Egs. (3.13)—(3.15) to show
that they are satisfied within the considered accuracy. First,
we study Eq. (3.13) which after the substitution of Egs. (3.16)
and (3.17) and some simple algebra takes the form
@ - %

“H—-—— (HF - F)=0.

3.20
a 2aF ( )

To estimate F and F , we take into account that in the limit
R — Roo, F~1,H ~ const = H ~ 0, and F'(Rs) is
some finite positive value. Then F = F'R ~ F'(Rso)R ~
T ~d(1/a’) /dt ~ H(1/a®) ~ 1/a* and F ~ a/a* ~
1/a3. Therefore, the left hand side of Eq. (3.20) is of the
order o(1/a®) and we can put it zero within the accuracy of
our approach. Similarly, Egs. (3.14) and (3.15) are satisfied
within the considered accuracy. It can also be seen that the
second term on the left hand side of Eq. (3.17) is of the order
O(1/a’) and should be eliminated.

Thus, in the case of the large enough scalaron mass we
reproduce the linear cosmology from the nonlinear one, as it
should be.

3.2.2 Quasi-static approximation

Now we do not want to assume a priori that the scalaron
mass is large, i.e., F’ can have arbitrary values. Hence, we
will preserve the § F terms in Eqgs. (2.16)—(2.21). Moreover,
we should keep the time derivatives in these equations. Such
a system is very complicated for the direct integration. How-
ever, we can investigate it in the quasi-static approximation
[36,37] (see also Sec. 8.1 in [6]). According to this approxi-
mation, the spatial derivatives give the main contribution to
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Egs. (2.16)—(2.21). Therefore, first, we should solve “astro-
physical” Egs. (3.1)—(3.5), and then check whether the found
solutions satisfy (up to the adopted accuracy) the full system
of equations. In other words, in the quasi-static approxima-
tion it is naturally supposed that the gravitational potentials
(the functions &, W) are produced mainly by the spatial dis-
tribution of astrophysical/cosmological bodies. As we have
seen, Eqs. (3.1)—(3.5) result in Egs. (3.6)-(3.9). Now, we
should keep in mind that we have the cosmological back-
ground. Moreover, we consider the late Universe which is
not far from the de Sitter point R4s in future.! This means
that 5p = p — p in Eq. (3.7), all background quantities
(e.g., F, F’) are calculated roughly speaking at Rqs and the
scalaron mass squared (3.9) reads now [6,26,32-34]

2= (F _g
—3 F ds | -

Let us consider now Eq. (3.8) with the mass squared (3.21).
Taking into account that now dp. = p. — p¢, We can rewrite
this equation as follows:

(3.21)

ASR — M28R+——Zm S(r—r;) =0, (3.22)
where
2 K2 K2
SR = SR =6R+—————p.
T TR o R

(3.23)

Equation (3.22) demonstrates that we can apply the prin-
ciple of superposition solving this Helmholtz equation for
one gravitating mass m;. Then the general solution for a full
system is the sum over all gravitating masses. As boundary
condltlons we require for each grav1tat1ng mass the behavior
SR ~ 1/r at small distances r and SR — 0 for r — oo.
Taking all these remarks into consideration, we obtain for a
full system

2

K Zmi exp (—M|r —r;])

~ 12raF’ Ir—r|

K2

T (F~ FRga®"
It is worth noting that averaging over the whole comoving
spatial volume V gives the zero value § R = (. Really, since

Zl ml/V = 15(,"

_ 1 1 K
R=— | RAV = ————
|4 V 12maF’

(3.24)

2

! Therefore, the closer to Rgs we are, the more correct our approxima-
tion is.

@ Springer

2

4
S mi - 5=0. (325
p M (F — F'Rgs)a

This result is reasonable because the rest mass density fluc-
tuation 8p, representing the source of the metric and scalar
curvature fluctuations @, W and § R, has a zero average value
8p = 0. Consequently, all enumerated quantltles should also
have zero average values: ® = W = 0 and SR = 0, in
agreement with Eq. (3.25).

From Eq. (3.6) we get the scalar perturbation functions W
and @ in the following form:

\IJ=£|: K2 Zm,-exp(—M|r—r,~|)
i

2F | 12naF’ Ir—r|

_ K—zpc L2 (3.26)
(F — F'Rgs)a’ a’
_F K2 Zm,~exp(—M|r—ri|)
 2F | 12naF’ Ir —r;|
K2 _
- mpc + -, (3.27)

where ¢ satisfies Eq. (3.7) with §p in the form (2.22) (i.e.,
pc # 0). Obviously, when F/ — 0, M — oo, and we
have exp (—M|r — r;|) /|r — r;| — 478 (r —1;)/M?, s0 the
expression in the square brackets in Eqgs. (3.26) and (3.27)
is equal to K28p./ [(F — F/Rds)a3]. Therefore, in the con-
sidered limit F/ — 0 we reproduce the scalar perturbations
@, U from the previous large scalaron mass case, as it cer-
tainly should be.

Thus, neglecting for a moment the influence of the cos-
mological background, but without neglecting the scalaron’s
contribution, we have found the scalar perturbations. They
represent the mix of the standard potential ¢/a (see the lin-
ear case [14]) and the additional Yukawa term which follows
from the nonlinearity.

Now we should check that these solutions satisfy the full
system (2.16)—(2.21). To do it, we substitute Egs. (3.24),
(3.26), and (3.27) into this system of equations. Obviously,
the spatial derivatives disappear. Keeping in mind this fact,
the system (2.16)—(2.21) is reduced to the following equa-
tions:

. _ 1 2
3H (HO + ) = 2F[(3H +3H)8F
—3HSF+3HF®+3F (Hd>+\il)],
(3.28)
Hb 4+ ¥ = %(8F—H8F—F<I>), (3.29)
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3(HO+HO + W)+ 6H (HO + W) +3H®
iF [36F +3H5F — 6H?SF — 35
= 3F (HO+ ) — 3HF +6F) @], (3.30)

SF +3HSF = FOGH® + 3V + &)+ 2F® + 3HF ®,

3.31)
SF = F'SR,
F’ . . .
FIedsaR =-2[3(HO+HD+ V)
+12H (H® + ¥) + 3H®]. (3.32)

Here, the term —(R/3)8 F (the term (F’/F)R4s8R) on the
left hand side of Eq. (3.31) ((3.32)) disappears (appears) due
to the redefinition of the scalaron mass squared (3.21).

All terms in Egs. (3.24), (3.26), and (3.27) depend on
time, and therefore may contribute to Egs. (3.28)—(3.32). As
we wrote above, according to our nonrelativistic approach,
we neglect the terms of the order o(1/a?). On the other
hand, exponential functions decrease faster than any power
function. Moreover, we can write the exponential term in
Eq. (3.24) as follows:

2 m; exp (— é (£ — Ras)|Tph — Tpni |>
12 F’

)

[rph — Tphil
(3.33)

where we introduced the physical distance rph = ar. It is
well known that astrophysical tests impose strong restric-
tions on the nonlinearity [38,39] (the local gravity tests
impose even stronger constraints [35,38,39]). According to
these constraints, Eq. (3.33) should be small at the astro-
physical scales. Consequently, on the cosmological scales
it will be even much smaller. So, we will not take into
account the exponential terms in the above equations. How-
ever, in Egs. (3.24), (3.26), and (3.27), we have also l/a3
and 1/a terms which we should examine. Before perform-
ing this, it should be recalled that we consider the late Uni-
verse which is rather close to the de Sitter point. Therefore,
as we already noted in the previous subsection, F ~ 1,
H ~const = H ~ 0, Rgs = 12H? and F'(Rgs) is some
finite positive value. Additionally, F, F, F/~ 1/a3. Hence,
all terms of the form of F, F, F' x b, v, dD, U are of the
order o(1/a’) and should be dropped. In other words, the
functions F and F’ can be considered as time independent.

First, let us consider the terms ¥ = & = ¢/a in
Egs. (3.26) and (3.27) and substitute them into Egs. (3.28)—
(3.32). Such 1/a term is absent in §R. So, we should put
SR = 0,8 F = 0. Obviously, this is the linear theory case. It
can easily be seen that all equations are satisfied. Indeed, the
functions @ and W are included in Egs. (3.28)—(3.30) and

(3.32) (Eq (3. 31) is satisfied identically) in combinations
H® + ¥ and H® + W which are equal to zero.
Now, we study the terms ~ 1/a>,

SR— < P
(F — F'Rgs) a®

v <F Pe. (3.34)
2F(F — F'Rgs) a®

o F p

2F(F — F'Rgs) @3

Let us examine, for example, Eq. (3.28). Keeping in mind
that SF = F'8 R, one can easily get

12H2L&
2F(F — F'Rgs) a3
2F/ =
= 12H? < +o(l/a’). (3.35)

2F(F — F'Rgs) a 3

Therefore, the terms ~ 1 /a exactly cancel each other, and
this equation is satisfied up to the adopted accuracy o(1/a?).
One can easily show that the remaining Eqgs. (3.29)—(3.32)
are fulfilled with the same accuracy.

Thus, we have proved that the scalar perturbation func-
tions W and @ in the form (3.26) and (3.27) satisfy the sys-
tem of Egs. (2.16)—(2.21) with the required accuracy. Both
of these functions contain the nonlinearity function F and
the scale factor a. Therefore, both the effects of nonlinear-
ity and the dynamics of the cosmological background are
taken into account. The function ® corresponds to the grav-
itational potential of the system of inhomogeneities. Hence,
we can study the dynamical behavior of the inhomogeneities
(e.g., galaxies and dwarf galaxies) including into consider-
ation their gravitational attraction and cosmological expan-
sion, and also taking into account the effects of nonlinearity.
For example, the nonrelativistic Lagrange function for a test
body of the mass m in the gravitational field described by the
metric (2.15) has the form (see [14] for details):

242
ma-v 2

S v =2 +y2 4%

L~ —md+ (3.36)

We can use this Lagrange function for analytical and numer-
ical study of mutual motion of galaxies. In the case of the
linear theory, such investigation was performed, e.g., in [15].
With the help of the explicit expression (3.27) we can per-
form now similar numerical and analytical investigations for
different f(R) models.

4 Conclusion

In our paper we have studied scalar perturbations of the met-
ric in nonlinear f(R) gravity. The Universe has been con-

@ Springer
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sidered at the late stage of its evolution and at scales much
less than the cell of uniformity size which is approximately
190 Mpc [12]. At such distances, our Universe is highly inho-
mogeneous, and the averaged hydrodynamic approach does
not work. Here, the mechanical approach [12,14] is more
adequate. Therefore, we have used the mechanical approach
to investigate the scalar perturbations in nonlinear theories.
We have considered a class of viable f(R) models which
have de Sitter points in future with respect to the present
moment [18,19,27].

The main objective of this paper was to find explicit
expressions for ® and W in the framework of nonlinear
f(R) models. Unfortunately, in the case of nonlinearity the
system of equations for scalar perturbations is very compli-
cated. It is hardly possible to solve it directly. Therefore,
we have considered the following approximations: the astro-
physical approach, the large scalaron mass case and the quasi-
static approximation. In all three cases we found the explicit
expressions for the scalar perturbation functions ® and ¥ up
to the required accuracy. The latter means that, because we
consider nonrelativistic matter with the averaged rest mass
density 5 ~ 1/a>, all quantities in the cosmological approx-
imation are also calculated up to the corresponding orders
of 1/a. It should also be noticed that in the cosmological
approach our consideration is valid for nonlinear models
where functions f(R) have the stable de Sitter points Rgs
in future with respect to the present time, and the closer
to Rgs we are, the more correct our approximation is. All
three popular models, Starobinsky [21], Hu—Sawicki [22]
and MJWQ [23] (see also [17,26]) have such stable de Sit-
ter points in future (approximately at the redshift z = —1)
[24,25].

The quasi-static approximation is of most interest from
the point of view of the large-scale structure investigations.
Here the gravitational potential ® of Eq. (3.27) contains both
the nonlinearity function F and the scale factor a. Hence, we
can study the dynamical behavior of the inhomogeneities
(e.g., galaxies and dwarf galaxies) including into considera-
tion their gravitational attraction and the cosmological expan-
sion, and also taking into account the effects of nonlinearity.
All this makes it possible to carry out the numerical and ana-
lytical analysis of the large-scale structure dynamics in the
late Universe for nonlinear f(R) models.
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