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Abstract Application of the effective action approach to
amplitudes with loop integration is studied for collisions on
two and three centers with possible gluon emission. A rule
is formulated for the integration around pole singularities in
the induced vertices which brings the results in agreement
with the QCD. It is demonstrated that the amplitudes can be
restored from the purely transverse picture by introducing
the standard Feynman propagators for intermediate gluons
and quarks.

1 Introduction

In the Regge kinematics, relevant for high-energy hadronic
processes, in the framework of the perturbative QCD, the
amplitudes can be conveniently constructed using the effec-
tive action proposed by Lipatov [1,2]. In this formalism glu-
ons at fixed rapidities are described by the standard field
Vμ = −i ta V a

μ . Regions with essentially different rapidities
are connected by the reggeon field Ay

μ = −i ta Aya
μ with only

non-zero longitudinal components A+ and A−, describing
the reggeized gluons.

The effective Lagrangian is local in rapidity and describes
the self-interaction of gluons at a given rapidity by means of
the usual QCD Lagrangian LQCD and their interaction with
reggeons. It has the form [1,2]

Leff = LQCD(V y
μ + Ay

μ) + 2Tr
(
(A+(V y

+ + Ay
+) − Ay

+)

×∂2⊥ Ay
− + (A−(V y

− + Ay
−) − Ay

−)∂2⊥ Ay
+
)
, (1)
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where

A±(V±) =
∞∑

n=0

(−g)n V±(∂−1± V±)n

= V± − gV±∂−1± V± + g2V±∂−1± V±∂−1± V±
+ − . . . . (2)

The shift Vμ →Vμ+Aμ with A⊥ =0 is done to exclude direct
gluon–reggeon transitions. The reggeon fields are assumed
to be subject to kinematical conditions ∂− A+ = ∂+ A− = 0
and their propagator is in the momentum representation

〈Aya
+ Ay′b

− 〉 = −i
δab

q2⊥
θ(y′ − y). (3)

Inspection of (2) shows that the new vertices generated
by the effective action (‘induced’ vertices) contain poles at
∂± = 0, which in the momentum representation correspond
to vanishing of the longitudinal momenta transferred to the
target or projectile. In fact these vertices can only be intro-
duced when these momenta are different from zero. Other-
wise the conditions of the reggeon kinematics are violated
and the effective action cannot be applied. Thus effective
action serves only to find induced vertices at non-zero val-
ues of the transferred longitudinal momenta. However, in
the physical amplitudes these vertices are only a part of the
whole contribution. They are to be connected with the pro-
jectile(s) and target(s) with reggeon propagators and in many
cases integrated over the transferred longitudinal momenta.
At this moment the problem of interpreting the mentioned
singularities at zero values of these momenta arises.

Hermiticity of the effective Lagrangian suggests that from
the start the singularities at ∂± = 0 should possibly be
interpreted in the Cauchy principal value prescription in the
momentum representation. In our papers [3,4] it was shown
that for the scattering on two centers with gluon emission
this prescription indeed produces correct amplitudes, which
in the lowest order reproduce the standard QCD amplitudes.
However, in a later paper M.Hentschinski discovered that for

123



2989 Page 2 of 13 Eur. Phys. J. C (2014) 74:2989

simple elastic scattering on three centers the principal value
prescription for the effective Lagrangian violates the desired
properties of the transition vertex of a reggeon into three
reggeons (‘R→RRR vertex’) and in all probability to more
reggeons [5,6]. To restore these properties M.Hentschinski
proposed a recipe, which essentially consists in projecting
the contribution of the vertex onto maximally antisymmet-
ric color states in the crossed channel. Obviously this recipe
is external to the effective action approach and should be
invoked as an additional requirement. However, this recipe
refers only to the vertex itself and does not cover the case
when the vertices are inserted into the amplitudes as a whole
and when it does not solve the problem.

In this paper we study this question in a more general
framework and propose a different prescription. In the effec-
tive action the propagators of the projectile coupled to the
reggeons should not be taken as the standard Feynman ones.
Only the δ-functional part of them should be retained in
accordance with the fact that the effective action is local in
rapidity [4].

Note that the product of dropped parts with principal
value singularities may itself contain δ-functional terms. So
the recipe in [4] cannot be formulated as discarding all δ-
functional terms in the product of intermediate projectile
propagators as a whole. Rather such terms should be dropped
in each intermediate propagator.

We advocate that in accordance with the Regge kinematics
one should operate with the induced vertex as if the trans-
ferred longitudinal momenta were different from zero. We
show that after its transformation into a certain adequate form
one can impose the prescription of principal value for the sin-
gularities of the effective action in the longitudinal momenta.
The ‘adequate form’ is such that all the resulting propagators
have the standard Feynman singularities.

Note that taking the transferred longitudinal momenta dif-
ferent from zero from the start we do not pretend to specify
a description to circumvent the singularities. The question of
the correct pole prescription is avoided at this point and in
fact postponed for later analysis of the amplitude as a whole.
In this analysis one indeed finds ambiguities as to discarding
the δ-functional terms. They are resolved in a unique manner
by requiring that in the end one finds only the Feynman sin-
gularities as dictated by comparison with the QCD diagrams.

We shall demonstrate that this rule allows to obtain cor-
rect amplitudes from the effective action without any addi-
tional non-physical terms. One can mnemonically term this
prescription by the rule that the induced vertices cannot con-
tain any δ-functions in the transferred longitudinal momenta,
although the exact meaning of this rule is as presented above.

We also show that there exists an alternative way for the
construction of amplitudes in the Regge kinematics, which
completely avoids the mentioned singularity problem. Since
many years ago, starting from [7–9] and followed by [10], it

was shown that their multiple discontinuities can be con-
structed in a purely transverse picture containing certain
effective vertices (Lipatov and Bartels vertices) for real gluon
emission. We demonstrate that the amplitudes themselves
can be restored from this transverse picture by connecting
the particles (gluon and quarks) by standard Feyman propa-
gators. In some cases this method proves to be simpler that
the direct application of the effective action (see e.g. [11]).

The paper is organized as follows. In Sects. 2 and 3 we
consider scattering on two centers without (Sect. 2) and with
(Sect. 3) gluon emission. In this case the principal value pre-
scription works. A part of the material in these sections has
been already published in [4,6] and is included to have a gen-
eral view on the problem. The new results refer to the descrip-
tion in terms of Lipatov and Bartels vertices connected by
Feynman propagators. In Sects. 4 and 5 we study scattering
on three centers without (Sect. 4) and with (Sect. 5) gluon
emission. Again a part of the material reproduces results of
[12] necessary for the presentation but most of it is new.

In our study we simplify the projectile and targets to be
quarks of momentum k for the projectile and l for each of
the two or three targets. We assume k− = l+ = k⊥ = l⊥ = 0
and work in the c.m. system k+ = l−. The color indices of
reggeons attached to the targets and that of the emitted gluon
are denoted as b1, b2, b3, and a, respectively. To economize
on notations we denote the products of projectile quark color
matrices tb1 tb2 tb3 simply as (123) and their trace as [123].
Also the longitudinal momenta q1−, q2−, and q3− will be
denoted as 1, 2, and 3 when this does not lead to confusion.
Pole at zero values of longitudinal momenta will always be
understood in the principal value sense, which will not be
indicated explicitly. In our figures the normal gluons will be
shown by solid lines and reggeons by wavy lines. The quark
projectile will be shown by thick solid line. The induced ver-
tices will be denoted by open circles with cross, the effective
vertices of Lipatov and Bartels by simple and double dots.

2 Elastic scattering off two centers

2.1 Lowest order QCD

In QCD in the lowest order the amplitude for the elastic
scattering off two centers in the axial gauge (V l) = 0 is
trivial: it is just the double gluon exchange, Fig. 1A, since
the contribution of the diagram with the 3-gluon vertex
Fig. 1B is zero.

So the amplitude is

A = 16(kl)2 (21)

(k − q1)2 + i0
+ P12. (4)

Here, as mentioned in the Introduction, (21) = tb2 tb1 ; q1 is
the momentum transferred to the right target. In the high-
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Fig. 1 Elastic scattering on two centers in the lowest order of the QCD.
Here and in the following figures coupling of the reggeons to the target
quarks is not explicitly shown

Fig. 2 Elastic scattering on two centers in the effective action approach

energy limit q1+ → 0. Symbol P12 means interchange
1 ↔ 2. From the mass-conditions for the projectile it fol-
lows that q1− + q2− → 0. The Regge kinematics assumes
|2k+q1−| >> |q2

1⊥|. Then (k − q1)
2 = −2k+q1− + q2

1⊥ 	
−2k+q1−. In this limit the amplitude can be split into the
principal value part and δ-functional part as follows:

A = 16(kl)2
[
−i f b1b2ctcP

1

2k+q1−

−πδ(2k+q1−){tb1 tb2}
]

+ P12. (5)

2.2 Effective action result

In the effective action approach one has to retain only the δ-
functional part of the diagram in Fig. 2A but take into account
the diagram in Fig. 2B. Obviously to have the correct ampli-
tude the latter has to reproduce the term with the principal
value in (5).

The standard 3-gluon vertex, as before, gives zero in
the axial gauge and only the induced vertex remains. This
reggeon → two-reggeons vertex is given by

�R→R R = (q1 + q2)
2⊥

q1−
f b1b2c. (6)

Inserting it into the amplitude in Fig. 2B we obtain the
contribution

A1 = −i16(kl)2 f b1b2ctc 1

2k+q1−
. (7)

Comparison with (5) demonstrates that if one understands
the pole at q1− = 0 in (7) in the principal value sense then
the effective action exactly reproduces the QCD result.

Note that from this result it follows that one can describe
the scattering just by taking only diagrams A with the double
reggeon exchange. In this way one avoids poles at q1− = 0
altogether and remains with the standard Feynman denom-
inators. This presets a simple example of the alternative
description of high-energy amplitudes in the Regge kine-
matics.

3 Gluon emission off two centers

3.1 Lowest order QCD

In the QCD at the lowest order it is described by 6 diagrams
shown in Fig. 3A–F .

These diagrams in the Regge kinematics were calculated
in [4]. It was found

A + B + C = −32i(kl)2 (ep)⊥
p2⊥

[
f b1ac(2c)

(k′ + q2)2 + i0

− f ab2c(c1)

(k − q1)2 + i0

]
, (8)

D =−32i(kl)2(e, p+q1)⊥
f ab1c(2c)

[(k′+q2)2+i0][(p+q1)2+i0] ,
(9)

E =−32i(kl)2(e, p+q2)⊥
f ab2c(c1)

[(k−q1)2+i0][(p+q2)2+i0] ,
(10)

F = 32(kl)2 p+
k+

(e, p + q1 + q2)⊥
(p + q1 + q2)

2⊥

f ab2c f cb1d td

(p + q2)2 + i0
. (11)

Here e, p, and a are the polarization vector, momentum, and
color index of the emitted gluon; k′ = k−q1−q2− p; (2c) =
tb2 tc. To these diagrams also the ones with the interchange
1 ↔ 2 should be added.

3.2 Effective action results

In the effective approach the same amplitude is described by
only four diagrams shown in Fig. 4A–D.

In diagrams A and B the gluon is emitted by the Lipatov
vertex. We have

L(p, q1) = (pe)⊥
p2⊥

− (p + q1, e)⊥
(p + q1)

2⊥
. (12)

According to the rules of the effective action approach in
these diagrams in the quark propagator only the δ-functional
term is to be retained.
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Fig. 3 Gluon emission on two
centers in the lowest order of the
QCD

Fig. 4 Gluon emission on two centers in the effective action approach

The R → R R P vertex (P for “particle’) which enters
diagrams C and D was calculated in [3]. It can be split into
the proper (W) and induced (R) parts,

�R→R R P = WR→R R P + RR→R R P , (13)

WR→R R P = −i
2q+q2⊥

(q2 + p)2 + i0
f db1c f cb2a B(p, q2, q1),

(14)

RR→R R P = i
q2⊥
q1−

f db1c f cb2a L(p, q2). (15)

Here B(p, q2, q1) = L(p + q2, q1) is the so-called Bartels
vertex.

Inserted into the amplitude the proper part W does not
give any trouble after integrations. However, in the induced
part R we again meet with the pole at q1− = 0. In [4] it was
demonstrated that summed with the δ-functional term from
the quark propagator the contribution from the R → R R P
vertex contained in the part R exactly reproduces the QCD
result provided one interprets the pole in (15) as the principal
value. The necessity to remove δ-functional terms from the
induced vertex does not arise.

However, this is not so for scattering on three (and possible
more) centers.

3.3 Alternative form of the amplitude with gluon emission

Here we present a different form of the amplitude in terms
of the Lipatov and Bartels vertices, which does not involve
poles at q1,2− = 0 and so does not require any additional
information about these poles.

In the Regge kinematics

1

(p + q1)2 + i0
= 1

−2p+q2− + (p + q1)
2⊥ + i0

= 1

(p + q1)
2⊥

(
1 + 2p+q2−

(p + q1)2 + i0

)
. (16)

Correspondingly we split the contribution D, see (10), to
the amplitude in two parts: D = D1 + D2, where

D1 = −32i(kl)2 (e, p + q1)⊥
(p + q1)

2⊥

f ab1ctb2 tc

(k′ + q2)2 + i0
, (17)
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D2 = −32i(kl)2 (e, p + q1)⊥
(p + q1)

2⊥
f ab1ctb2 tc

× 2p+q2−
[(k′ + q2)2 + i0][(p + q1)2 + i0] . (18)

Similarly we split the contribution E , see (11), in two parts

E1 = −32i(kl)2 (e, p + q2)⊥
(p + q2)

2⊥

f ab2ctctb1

(k − q1)2 + i0
, (19)

E2 = −32i(kl)2 (e, p + q2)⊥
(p + q2)

2⊥
f ab2ctctb1

× 2p+q1−
[(k − q1)2 + i0][(p + q2)2 + i0] . (20)

The terms D1 and E1 summed with A + B + C give

A + B + C + D1 + E1 = −32i(kl)2

×
(

f b1actb2 tc L(p, q1)

(k′ + q2)2 + i0
+ f b2actctb1

L(p, q2)

(k − q1)2+i0

)
,

(21)

which corresponds to the diagrams of Fig. 4A,B with normal
Feynman propagators.

Interchanging (1 ↔ 2) in D2 and E2 gives contributions
D̃2 and Ẽ2. One finds

D2 + Ẽ2 = 32(kl)2 (e, p + q1)⊥
(p + q1)

2⊥
f ab1c f b2cd td

× p+
k+

1

(p + q1)2 + i0
(22)

and D̃2+E2 is obtained after interchange (1 ↔ 2). Summing
this with F , (11) and F̃ obtained after (1 ↔ 2) we get

F + D̃2 + E2 = 32(kl)2 f ab2c f b1cd td p+
k+

B(p, q2, q1)

(p + q2)2 + i0
,

(23)

F̃ + D2 + Ẽ2 = 32(kl)2 f ab1c f b2cd td p+
k+

B(p, q1, q2)

(p + q1)2 + i0
.

(24)

These contributions correspond to the diagram in Fig. 4C
and the one with (1 ↔ 2) with the Bartels vertex and normal
Feynman propagator.

As a result the entire amplitude can be obtained from only
diagrams in Fig. 4A, B, and C with the standard Feynman
propagators without the induced contribution in Fig. 4D. In
this way, as before, the problem of singularities at q1,2− = 0
does not arise at all.

4 Elastic scattering off three centers

4.1 Lowest order QCD

In the axial gauge the amplitude for the elastic scattering off
three centers in the lowest order is again trivial and reduces
to the triple gluon exchange, Fig. 5A, since diagrams 5B–D
with both 3- and 4- gluon vertices give zero.

So the amplitude is

A=64i(kl)3 (321)

[(k−q1−q2)2+i0][(k−q1)2+i0] +P123.

(25)

where P123 means adding contributions from the permuta-
tion of (1,2,3). We recall that (123) = tb1 tb2 tb3 . Denoting
q1−, q2−, and q3− simply as 1, 2, and 3 respectively, we
rewrite (25) as

A = i
64(kl)3

4k2+
(321)

[−(1 + 2) + i0][−1 + i0] + P123. (26)

For the following it is useful to split the propagators into
the principal value and δ-functional parts

1

[−(1 + 2) + i0][−1 + i0]
=

(
− 1

1 + 2
− iπδ(1 + 2)

)(
− 1

q1−
− iπδ(1)

)

= 1

(1+2)1
+iπ

1

q2−

(
δ(1)−δ(3)

)
−π2δ(1)δ(2). (27)

Here we used that in the Regge kinematics 1 + 2 + 3 = 0.
In summing over permutations of (1, 2, 3) it is convenient

to combine terms with order (123) and (321), since

2 + 3 = −1, 3 = −(1 + 2), 3 ↔ 1,

so that the term with (123) → (321) will have the same real
part as (27) but the imaginary part with the opposite sign.
Introducing

(123)± = 1

2

(
(123) ± (321)),

we find

A = i
64(kl)3

2k2+

{
(321)+

( 1

(1 + 2)1
− π2δ(1)δ(2)

)

+ (213)+
( 1

(1 + 3)3
− π2δ(1)δ(3)

)

+ (132)+
( 1

(2 + 3)2
− π2δ(2)δ(3)

)

+ iπ(321)−
1

q2−

(
δ(1) − δ(3)

)

123
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Fig. 5 Elastic scattering on three centers in the lowest order of the QCD

Fig. 6 Elastic scattering on three centers in the effective action approach

+ iπ(213)−
1

q1−

(
δ(3) − δ(2)

)

+ iπ(132)−
1

q3−

(
δ(2) − δ(1)

)}
. (28)

4.2 Effective action result

In the effective action approach, apart from the triple reggeon
exchange we have additionally diagrams with induced 3-
reggeon and 4-reggeon vertices; see Fig. 6B–D.

In the triple gluon exchange we have to retain in the quark
propagators only the δ-functional terms. Their contribution
will obviously reproduce terms with the product of two δ-
functions in (28).

Let us start with diagram D in Fig. 6. The induced 4-
reggeon vertex is

�R→R R R = 2ig2 q2⊥
(q1 + q2)−q1−

Tr(tatb3 tb2 tb1) + P123,

(29)

where q = q1 + q2 + q3. We denote

Tr(tatb3 tb2 tb1) ≡ [a321]
and rewrite (29) as

�R→R R R = 2ig2 q2⊥
(1 + 2)1

[a321] + P123. (30)

Combining terms with order (123) and (321) and assuming
that the denominators do not vanish we get

�R→R R R = 4ig2q2⊥
{
[a321]+ 1

(1 + 2)1
+ [a213]+

× 1

(1 + 3)3
+ [a132]+ 1

(3 + 2)2

}
, (31)

where [a132]+ = (1/2)([a132] + [a231]).
Inserting this into the amplitude we get the additional fac-

tor 16k+l3−ta/q2⊥ with summation over a. Presenting (123) =
C123 + Cd123td , multiplying, and taking traces we find

[123] = NcC123 = 1

4
(d123 + i f 123), [a123] = 1

2
Ca123.

Thus

(123) = 1

4Nc
(d123 + i f 123) + 2ta[a123],

from which we find

ta[a123] = 1

2
(123) − 1

8Nc
(d123 + i f 123), ta[a123]+

= 1

2
(123)+ − 1

8Nc
d123. (32)

So we get for diagram D in Fig. 6

D = 32ik+l3−
{
(321)+

1

(1 + 2)1
+ (213)+

1

(1 + 3)3

+ (132)+
1

(3 + 2)2

}
+ �D, (33)

where

123
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�D = 32ik+l3−
d123

8Nc

{
1

(1 + 2)1
+ 1

(1 + 3)3
+ 1

(3 + 2)2

}

= −32ik+l3−
d123

8Nc

{
1

1 · 3
+ 1

2 · 3
+ 1

1 · 2

}
. (34)

As mentioned in the Regge kinematics 1 + 2 + 3 = 0. So if
according to our rules we take all qi−, i = 1, 2, 3, different
from zero then the r.h.s. of (34) vanishes. In the principal
value prescription taken from the start

1

1 · 3
+ 1

2 · 3
+ 1

1 · 2
= −π2δ(1)δ(2). (35)

So in this case the induced vertex contains a δ-functional
contribution. Our rule is equivalent to dropping it. So with
our rule �D = 0 and comparing with (28) we conclude that
the effective action correctly reproduces the part of the QCD
amplitude with the product of two principal value poles.

Note that without our rule �D is different from zero and
we get an additional contribution with the product δ(1)δ(2),
which spoils the agreement with the QCD result.

Now to the diagrams B and C . Inserting the vertex �R→R R

into the amplitude we get the product

i tb3 ta f ab1b2 = tb3[tb1, tb2 ].

So we find

B = 16(kl)l2−π

{
δ(3)

1

q1−

(
(312) − (321)

)

+δ(2)
1

q3−

(
(231)−(213)

)
+δ(1)

1

q2−

(
(123)−(132)

)}
.

(36)

In the same way we find

C = 16(kl)l2−π

{
δ(3)

1

q1−

(
(123) − (213)

)

+ δ(2)
1

q3−

(
(312) − (132)

)
+ δ(1)

1

q2−

(
(231) − (321)

)}
.

(37)

In the sum

B + C = 32(kl)l2−π

{
(312)−

(
δ(3)

1

q1−
+ δ(2)

1

q3−

)

+(123)−
(
δ(3)

1

q1−
+ δ(1)

1

q2−

)

+(231)−
(
δ(2)

1

q3−
+ δ(1)

1

q2−

)}
. (38)

Taking into account that 1 + 2 + 3 = 0 we can rewrite it as

B + C = 32(kl)l2−π

{
(312)−

1

q1−

(
δ(3) − δ(2)

)

+(123)−
1

q2−

(
δ(1) − δ(3)

)

+(231)−
1

q3−

(
δ(2) − δ(1)

)}
. (39)

Comparing with (28) we conclude that we reproduce the
QCD result with the pole singularities in the principal value
prescription.

So in the end we have demonstrated that the principal
value prescription for the effective action gives the correct
amplitude for the elastic scattering on three centers provided
one drops δ-functional terms from the induced vertices and
retains only those of them that come from the projectile quark
propagators.

Note that as for the elastic scattering off two centers we
can forget about the induced vertices and use only the triple
reggeon exchange with full Feynman propagators for the pro-
jectile quark, thus completely avoiding discussion about pole
singularities in qi−, i = 1, 2, 3.

5 Gluon emission off three centers

5.1 QCD results

1. Three interactions of the projectile and the gluon emit-
ted from it

We have the four diagrams shown in Fig. 7A–D.
They all have a common factor F1:

F1 = 16i
(kl)3

8k3+
k+
p+

(ep)⊥

(i7 from the quark line, (−i)3 from interactions, (−i) for the
amplitude and a minus from (ek)).

Now for the rest. To have a more symmetric notations we
denote p− ≡ q4− and a ≡ b4. Then we find, neglecting the
transverse parts

(7, A) = (3214)

(−4 + i0)(−(4 + 1) + i0)(−(4 + 1 + 2) + i0)

= (3214)

(−4 + i0)(−(4 + 1) + i0)(3 + i0)
,

where we have used 1 + 2 + 3 + 4 = 0. Next

(7.B) = (3241)

(−1 + i0)(−(4 + 1) + i0)(3 + i0)
,

(7.C) = (3421)

(−1 + i0)(−(1 + 2) + i0)(3 + i0)

123
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Fig. 7 Three interactions of the projectile with gluon emission

and finally

(7.D = (4321)

(−1 + i0)(−(1 + 2) + i0)(4 + i0)
.

We transform

1

(−1 + i0)(−(1 + 4) + i0)
= 1

−4 + i0

×
( 1

−q1− + i0
− 1

−(q1 + p)− + i0

)

and correspondingly split (7.B) into two parts (7.B) =
(7.B1) + (7.B2), where

(7.B1) = (3241)

(−4 + i0)(−1 + i0)(3 + i0)
,

(7.B2) = − (3241)

(−4 + i0)(−(1 + 4) + i0)(3 + i0)
.

Similarly (7.C) = (7.C1) + (7.C2) with

(7.C1) = (3421)

(4 + i0)(−1 + i0)(3 + i0)
,

(7.C2) = − (3421)

(4 + i0)(−1 + i0)(3 + 4 + i0)
.

Now we combine (7.A) with (7.B2), (7.D) with (7.C2) and
(7.B1) with (7.C1) taking into account that 4 = p− does not
vanish. We get

(7.A + B + C + D) = 1

p−

{
i(32d) f 41d

(−(1 + 4) + i0)(3 + i0)

+ i(d21) f 43d

(−1 + i0)(3 + 4 + i0)
+ i(3d1) f 42d

(−1 + i0)(3 + i0)

}
. (40)

2. Three interactions of the projectile and the gluon emit-
ted from one of the interactions

We have three diagrams shown in Fig. 7E–G. The com-
mon momentum factor is

F2 = −16
(kl)3

4k2+
.

The rest gives

(7.E + F + G)= [e(p + q1)]⊥
(p + q1)2 + i0

(32d) f d41

(−(1+4)+i0)(3+i0)

+[e(p + q2)]⊥
(p+q2)2+i0

(3d1) f d42

(−1+i0)(3+i0)

+[e(p + q3)]⊥
(p+q3)2+i0

(d21) f d43

(−1 + i0)(3 + 4 + i0)
.

Summing with the contributions from the previous section
we find the total contributions from three interactions of the
projectile as

(7) = 4
(kl)3

k2+

{( (ep)⊥
p2⊥

− [e(p + q1)]⊥
(p + q1)2 + i0

)

× (32d) f 41d

(−(1 + 4) + i0)(3 + i0)
+

( (ep)⊥
p2⊥

− [e(p + q2)]⊥
(p + q2)2 + i0

)
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Fig. 8 Two interactions and one interaction of the projectile with gluon emission

× (3d1) f 42d

(−1 + i0)(3 + i0)
+

( (ep)⊥
p2⊥

− [e(p + q3)]⊥
(p + q3)2 + i0

)

× (d21) f 43d

(−1 + i0)(3 + 4 + i0)

}
. (41)

3. Two interactions of the projectile
Taking into account that diagrams with 3-gluon interac-

tion with the target give zero, the total contribution from
two interactions with the projectile reduces to four diagrams
shown in Fig. 8A–D. Diagrams B and D are obtained from
A and C, respectively, by the interchange 1 ↔ 2. So we only
need to study A and C.

The common momentum factor is

F3 = −16i
(kl)3 p+

2k2+
[e(p + q1 + q2)]⊥

(p + q1 + q2)2 + i0
.

The rest gives

(8.A) = F3
(3d) f de1 f e42

((p + q2)2 + i0)(3 + i0)
, (8.C) = F3

× (d3) f de1 f e42

((p + q2)2 + i0)(−3 + i0)
.

4. Single interaction of the projectile
Taking into account that diagrams with 4-gluon interaction

with the target give zero, the total contribution from the single
interactions with the projectile reduces to the diagram shown
in Fig. 8E plus others which are obtained by permutations
of the three gluons 1, 2, 3.

The momentum factor is

F4 = 16
(kl)3 p2+

k2+
[e(p + q1 + q2 + q3)]⊥
(p + q1 + q2 + q3)

2⊥
.

Note that (p + q1 + q2 + q3)− = 0 so that in this case
(p + q1 + q2 + q3)

2 + i0 = (p + q1 + q2 + q3)
2⊥. The rest

gives the contribution from Fig. 8D as

(8.E) = F4
tb f bd3 f de1 f e42

((p + q2)2 + i0)((p + q2 + q1)2 + i0)
. (42)

5.2 Gluon emission off three centers in terms
of the Lipatov and Bartels vertices

To compare with the results of the effective action it is con-
venient to first express the QCD amplitude in terms of the
Lipatov and Bartels vertices.

We start from the expression for diagrams in Fig. 7
obtained in the previous subsection. Since it is symmetric
under permutations of gluons 1, 2, and 3, we choose a differ-
ent numeration of gluons in different diagrams, namely, 213
from the left in the first term, 132 in the second and 321 in
the third one. Then instead of (41) we get

(7) = 4
(kl)3

k2+

{( (ep)⊥
p2⊥

− [e(p + q3)]⊥
(p + q3)2 + i0

)

× (21d) f 43d

(−(3+4)+i0)(2+i0)
+

( (ep)⊥
p2⊥

− [e(p + q3)]⊥
(p+q3)2+i0

)
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× (1d2) f 43d

(−2 + i0)(1 + i0)
+

( (ep)⊥
p2⊥

− [e(p + q3)]⊥
(p + q3)2 + i0

)

× (d21) f 43d

(−1 + i0)(3 + 4 + i0)

}
. (43)

We use the identity

1

(p + q3)2 + i0
= 1

(p + q3)
2⊥

− 2p+(p+q3)−
(p + q3)

2⊥((p+q3)2+i0)
.

(44)

The first term in (44) converts the brackets in (43) into the
Lipatov vertex and we get the first part of the amplitude:

A1 = (7)1 = 4
(kl)3

k2+
L(p, q3)

{
(21d) f a3d

(−(3 + 4) + i0)(2 + i0)

+ (1d2) f a3d

(−2 + i0)(1 + i0)

(d21) f a3d

(−1+i0)(3+4+i0)

}
+ P123.

(45)

The second term in (44) cancels one of the denominators
in each of the three terms in (43). The second term follows
from

2p+(p + q3)−
(−q2− + i0)(q1− + i0)

= 2p+
q1− + i0

− 2p+
−q2− + i0

, (46)

since (p + q3)− = −(q1 + q2)−. We obtain the second part
of (7):

(7)2 = 4
(kl)3

k2+
f 43d · [e(p + q3)]⊥

(p + q3)
2⊥

2p+
(p + q3)2 + i0

×
{
− (21d)

2 + i0
+ (1d2)

1 + i0
− (1d2)

−2 + i0
+ (d21)

−1 + i0

}
.

(47)

Now we interchange 1 ↔ 2 in the first and third terms in
(47) and change d → e after which it takes the form

(7)2 = 8i
(kl)3

k2+
· p+

[e(p + q3)]⊥
(p + q3)

2⊥

×
{

(1d) f de2 f e43

((p+q3)2+i0)(1+i0)
+ (d1) f de2 f e43

((p+q3)2+i0)(−1+i0)

}
.

(48)

Passing to the contribution in Fig. 8A–D we choose the
order of gluons from left to right (132) for (8.A) and (321)

for (8.C). Then their sum can be rewritten as

(8.A + C) = −8i
(kl)3

k2+
[e(p + q3 + q2)]⊥

(p + q3 + q2)2 + i0

×
(

(1d) f de2 f e43 p+
(p + q3)2 + i0)(1 + i0)

+ (d1) f de2 f e43 p+
(p + q3)2 + i0)(−1 + i0)

)
. (49)

Putting into (49) the first term of the right-hand side of the
identity

1

(p + q3 + q2)2 + i0
= 1

(p + q3 + q2)
2⊥

− 2p+(p + q3 + q2)−
(p + q3 + q2)

2⊥((p + q3 + q2)2 + i0)
(50)

and summing with (48) we get the second term of the ampli-
tude:

A2 = 4
(kl)3

k2+
· i

2p+ B(p, q3, q2)

(p + q3)2 + i0

×
(

(1d) f de2 f e43

1 + i0
+ (d1) f de2 f e43

−1 + i0

)
+ P123. (51)

Putting into (49) the second term of the right-hand side of
(50) we find

−16
(kl)3

k2+
[e(p + q3 + q2)]⊥
(p + q3 + q2)

2⊥

× tb f bd1 f de2 f ea3 · p2+
((p + q3)2 + i0)((p + q3 + q2)2 + i0)

. (52)

Summing this with the contribution (42) from Fig. 8E we
find the third term of the amplitude

A3 = −4
(kl)3

k2+
B(p, q3 + q2, q1)

× 4p2+ · tb f bdb1 f deb2 f eab3

((p + q3)2 + i0)((p + q3 + q2)2 + i0)
+ P123.

(53)

As a result we presented the QCD amplitude as a sum
of contributions corresponding to the transverse picture with
vertices of Lipatov and Bartels with normal Feynman prop-
agators both for gluons and quarks and illustrated in Fig. 9.

5.3 The effective action result

To find the contribution for the amplitude following applica-
tion of the effective action we can use our results in [12]
where the most complicated R→RRRP vertex was con-
structed under the assumption that neither of qi−, i = 1, 2, 3
vanishes. It contributes to the part of the production ampli-
tude AI with a single interaction with the quark projectile.
The contribution AI was found to be1

AI = g4γ+td f d1c f c2d f d3a (WI + QI + RI )+ P123, (54)

1 Note that the results of [12] were rewritten here in correspondence
with the normalization q± = (q0 ± q3)/

√
2 accepted in the present

paper.
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Fig. 9 Gluon emission on three
centers in the lowest order of the
QCD presented in terms of
Lipatov and Bartels vertices

where

WI = 2q2+ B(p, q3 + q2, q1)

((q − q1)2 + i0)((q − q1 − q2)2 + i0)
, (55)

QI = − q+ B(p, q3, q2)

q1−((q − q1 − q2)2 + i0)
, (56)

RI = L(p, q3)

2q1−(q1− + q2−)
. (57)

Here q = p + q1 + q2 + q3; it is assumed that q1−, (q1− +
q2−) �= 0.

In the framework of effective action to this contribution
one has to add the ones with the double and triple interactions
of the projectile. In both cases only the δ-functional parts of
the quark propagators are to be retained. In this manner we
find for the double interaction with the projectile

AI I =−iπg4γ+ f d3a
{(

(2d1)−(d21)+(12d)−(1d2)
)
δ(1)

×
[

q+ B(p, q3, q2)

(q − q1 − q2)2 + i0
− L(p, q3)

2q2−

]

+δ(1 + 2)L(p, q3)

(
(d21)

2q1−
− (21d)

2q2−

)}
+ P123 (58)

and for the triple interaction with the projectile

AI I I = 1

2
g4γ+π2δ(1)δ(2) f d3a

(
(d21) + (1d2) + (21d)

)

×L(p, q3) + P123. (59)

Summing all contributions we first find the term coming
from WI in (56) which exactly reproduces the QCD term A3

(53). The part QI summed with the term with B(p, q3, q2)

in AI I gives

g4γ+ f db3a q+ B(p, q3, q2)

(q − q1 − q2)2 + i0

×
[(

(2d1) − (d21)
)(

− 1

q1−
− iπδ(q1−)

)

+
(
(12d) − (1d2)

)( 1

q1−
− iπδ(q1−)

)]
+ P123.

We observe that this expression will coincide with the con-
tribution A2 from the QCD provided we interpret the poles
at q1− = 0 in the principal value sense.

The sum of all the rest terms can be presented as

(2d1)+ − (d21)+
1(1 + 2)

+ (d21)− + (1d2)−
q2−

(−iπ)δ(1)

+ (d21)−
q1−

(−iπ)δ(1+2) − 1

2

(
(d21)++(1d2)++(21d)+

)

×(−iπ)2δ(1)δ(2) +
(

1 ↔ 2
)

(60)

multiplied by the factor g4γ+ f d3a L(p, q3). Note that the
first term comes from RI in the induced R → R R R P vertex
and has been obtained under the assumption that q1,2,3−,
are different from zero, while the rest of the terms involve
contributions just from their zero values, coming from the
rescattering of the quark projectile.

In the sum with 1↔2 in the first term there appears a
contribution

(2d1)+
( 1

1(1 + 2)
+ 1

2(1 + 2)

)
. (61)

With the principal value poles the bracket is

1

1(1 + 2)
+ 1

2(1 + 2)
= 1

q1−
1

q2−
+ π2δ(1)δ(2). (62)

As we observe in this case the induced vertex again has a
δ-functional contribution, which we must drop, according to
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our rule. Then (61) becomes

(2d1)+
1

q1−
1

q2−
(63)

and one can combine all terms in (60) into

1

2
(d21)

(
− 1

q1−
1

1 + 2
+ (−iπ)δ(1)

1

1 + 2

+(−iπ)δ(1 + 2)
1

q1−
− (−iπ)2δ(1 + 2)δ(1)

)

+1

2
(1d2)

(
1

q1−
1

q2−
+ (−iπ)δ(1)

1

q2−

−(−iπ)δ(2)
1

q1−
− (−iπ)2δ(1)δ(2)

)

+1

2
(21d)

(
− 1

q2−
1

1 + 2
− (−iπ)δ(2)

1

1 + 2

−(−iπ)δ(1+2)
1

q2−
−(−iπ)2δ(1+2)δ(2)

)
+

(
1 ↔ 2

)
.

(64)

With all poles at q1− = 0, q2− = 0, and q1− + q2− = 0
taken in the principal value prescription (64) can be written
as

− 1

2

{
(d21)

(−(1 + 2) + i0)(−1 + i0)
+ (1d2)

(1 + i0)(−2 + i0)

+ (21d)

(2 + i0)(1 + 2 + i0)

}
+

(
1 ↔ 2

)
. (65)

Restoring the suppressed factor we see that this contribu-
tion exactly coincides with the part A1 of the QCD contri-
bution, given by (45). Thus, if we drop the δ-functional term
in (62), the effective action approach give the correct QCD
amplitude for gluon emission on three centers.

Note that this is not the only place where δ-functional
terms appear in the induced vertex. In fact already the expres-
sion for the R→ RRRP vertex in AI was obtained after drop-
ping such terms. Calculations find δ-functional terms in the
induced R→RRP vertex,

��R→R R P = −ig2π2δ(1)δ(2) (p + q1 + q2)
2⊥

× (pe)⊥
2p+

[b1a2 + b2a1] + P12, (66)

and in the induced R→RRRP vertex,

��R→R R R P = −g3π2δ(1)δ(2)q2⊥
(pe)⊥

p2⊥

×
(
[bd21 + b12d] f d3a + 1

2
f b1c f c2d f d3a

)
.

(67)

Collecting all of them we find that if they are retained the
effective action result for the amplitude will differ from the

QCD by the extra term

g4 1

8Nc
d2d1 f d3aγ+L(p, q3)π

2δ(1)δ(2) + P123. (68)

6 Discussion

Two main results have been obtained in this paper. First we
have demonstrated that for collisions off two and three cen-
ters in the Regge kinematics high-energy amplitudes both
with and without gluon emission can be presented in terms of
the reggeon exchange with vertices of Lipatov and Bartels for
gluon emission with the standard Feynman propagators. This
greatly simplifies practical calculations of physical proba-
bilities. For the specific kinematical region p− << q1,2−
this result was already found earlier [4]. In this paper we
have demonstrated that it valid in the general Regge kinemat-
ics. Note that we believe that this result has a more general
validity and is true for any amplitudes. This can be trivially
demonstrated for the simple BFKL chain. Discussion of more
complicated examples can be found in [13].

Second we have formulated a rule which guarantees that
the effective action approach gives results coinciding with the
QCD. This rule has the complementarity property: crudely
speaking, one has to retain only the δ-functional terms in the
projectile propagators and to drop such terms in the induced
vertices, in which the poles at zero values of the transferred
longitudinal momenta are to be taken in the Cauchy principal
value sense. The more precise meaning of the latter procedure
was explained in the Introduction.

Both results have been found in the lowest order of the
perturbative approach in the spirit of the BFKL approach,
in which higher orders are to be accompanied by evolution
in rapidity. They also have been found only for collisions on
two and three centers. We believe, however, that they preserve
validity also for larger number of collision centers.

As mentioned in the Introduction a different approach
was taken in [5,6]. M.Hentschinski proposed to project the
induced vertices for transitions of a reggeon to three or more
reggeons onto the maximally antisymmetric color states and
add ±iε to the denominators which vanish in these vertices.
He found that after this projection the dependence on the sign
of ε vanishes and the vertices satisfy the desired properties of
Bose symmetry and negative signature of the reggeon. It was
checked that his recipe reproduced the QCD results for the
gluon trajectory with one and two loops [14–16]. However,
his prescription refers only to the induced vertices themselves
and consequently to the amplitude with a single interaction of
colliding particles and not to the one with several interactions
as in our case. In the latter case the amplitude may contain
color states different from those present in the induced ver-
tex after M.Hentschinski’s projection. We calculated the pro-
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duction amplitude off three centers with his prescription for
the vertices and only the δ-functional parts of the rescatter-
ing projectile propagators retained, as dictated by the Regge
kinematics. As a result we found an extra (maximally sym-
metric) term compared to the QCD,

1

6
g4π2γ+L(p, q3)δ(1)δ(2) f d3a

×
(
[12d]+ + [2d1]+ + [d12]+

)
+ P123,

so that the prescription does not work.
Of course this result is valid only within our procedure

to treat multiple Regge exchanges (as in Fig. 6A), which we
consider well founded [4]. We admit that with a different pro-
cedure applied to Fig. 6A the prescription of [5,6] may work.
However, we see that one has first to propose an alternative
procedure for Fig. 6A compatible with the Regge kinematics.
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