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Abstract QCD sum rules are commonly used to predict
the characteristics of ground-state hadrons. We demonstrate
that two-point sum rules for the decay constants of charmed
(D™, D§*)) and bottom (B®), BA(*)) mesons can also be mod-
ified to estimate the decay constants of the first radial excita-
tions, D™’ Dﬁ*)/ and B™, BX(*)/, respectively, provided the
masses of these resonances are used as an input. For the radi-
ally excited charmed mesons we use available experimen-
tal data, whereas the masses of analogous bottom mesons
are estimated from the heavy-quark limit. The decay con-
stants predicted for the radial excitations of heavy-light pseu-
doscalar and vector mesons are systematically smaller than
those of the ground states and we comment on the possible
origin of this difference. Our results can be used in the sum
rule calculations of heavy-to-light form factors and in the fac-
torization approximations for nonleptonic B-meson decays
where the decay constants of charmed mesons enter as input
parameters.

1 Introduction

The spectrum of hadrons with a given spin-parity (J©) and
flavor contains radial excitations, the sequential resonances
heavier than the ground state. In the N. — oo limit of QCD a
series of equidistant resonances is anticipated [1,2]. Models
of equidistant states based on the resonance saturation of
the two-point correlation functions are used to investigate
quark—hadron duality and its violation [3—7]. Some recent
applications to heavy-flavor decays can be found in [8,9].
A clear identification of radial excitations on the back-
ground of hadronic continuum is a difficult experimental
task. Usually these resonances are strongly coupled to the
two- and three-hadron states from hadronic continuum, and
these couplings generate large total widths. Note also that
a strong mixing via intermediate continuum states can in
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principle significantly influence the pattern of the excited
resonances, affecting their masses, widths and decay con-
stants. It is therefore not surprising that radial excitations are
well established [10] only for a few mesons. In this respect,
the best studied are the neutral vector (J¥ =17) mesons
directly produced in et e~ annihilation, especially the heavy
quarkonia. There are at least five (six) observed radial exci-
tations! of the J /¥ (Y(1S5)) meson [10]. For the light-quark
mesons some excited states are presented in [10], for exam-
ple, p(1450) and p(1700) are identified as radial excitations
of p(770).

Relatively little is known about the radial excitations of
heavy-light D) and B™) mesons. On the experimental side,
there are few observations of charmed resonances [10-13]
whose quantum numbers and masses fit the expected proper-
ties of the radially excited states of D, D* and D}, denoted
here as D/, D¥ and D;‘,, respectively. These resonances
decay strongly to ground states and light mesons with a
width in the ballpark of 100 MeV. A pseudoscalar charmed-
strange meson D; was not yet established. Recent results
of LHCb [13] and CDF [14] collaborations on the excited
bottom mesons hint at B’- and B* -states.

Recently the radial excitations of charmed mesons were
discussed in connection with the semileptonic B — D’fvy
decays [15-17], hence dynamical characteristics of these
mesons are becoming a topical subject for heavy-flavor stud-
ies.

The properties of radially excited heavy-light resonances
were predicted in various versions of the constituent quark
model, starting from [18]; for a recent analysis, see e.g., [19].

I The notion “radial excitations” stems from quantum mechanics,
where it is used to denote the bound states obtained by solving the
radial Schrodinger equation in a central potential. In the framework of
the quarkonium potential model, the radially excited 23S -state differs
from the orbitally excited 3Dl -state, both having the same J P —1".In
QCD, a hadron is a relativistic bound state with a certain valence quark
content. Hence, here we count as radial excitations all resonances having
the same flavor and J* as the ground state.
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Assuming the dominance of the valence quark—antiquark
state and solving the bound-state problem for a certain quark—
antiquark potential, one calculates the energy spectrum and
the values of the wave functions at the origin, i.e., the masses
and decay constants of radially excited mesons. However,
the accuracy of the quark-model calculations is difficult to
assess in QCD, since the relativistic quark—antiquark and
gluon degrees of freedom beyond valence approximation are
not explicitly included. Some other theoretical studies were
presentedin [20,21]. Quite recently, lattice QCD studies were
performed to establish the properties of radially excited res-
onances. In particular, excited open-charmed mesons with
JP =07, 1~ have been studied in [16,22,23].

In the QCD sum rule approach [24], a correlation function
of two interpolating quark currents with a given flavor content
and J? is calculated using the operator product expansion
(OPE) in terms of QCD vacuum condensates. In the hadronic
dispersion relation, obtained applying unitarity to this corre-
lation function, all radially excited states, together with the
continuum multi-hadron states with the quantum numbers
of the interpolating currents are usually included into one
hadronic spectral density whereas the ground-state contri-
bution is isolated. The dispersion integral over the spectral
density of excited and multi-hadron states is approximated
applying the quark—hadron duality and introducing an effec-
tive threshold. After that the physical characteristics of the
ground state are determined with a certain accuracy.

It is conceivable that a correlation function calculated in
the spacelike region, via quark—hadron duality provides cer-
tain dynamical information not only on the ground state but
on the whole spectrum of resonances.? Indeed, as shown
in [3-5], a correlation function, analytically continued to
timelike momentum transfers, yields an infinite “comb” of
equidistant poles. On the other hand, it is evident that the
OPE with truncated power corrections can only provide a
very limited information about hadronic states. In particu-
lar, the strong couplings of resonances to continuum states,
their mixing and the resulting resonance widths are difficult
to reproduce.

In this paper we consider as a study case the QCD sum
rules for heavy-light currents, interpolating pseudoscalar and
vector charmed and bottom mesons. The conjecture formu-
lated above is addressed only to the first radial excitations of
heavy-light mesons. We demonstrate that modifying QCD
sum rules, it is possible to determine the decay constants of
these states in addition to the ones of ground states. In what
follows, we extensively use the results of our recent work [29]
where the sum rules for pseudoscalar and vector heavy-light
mesons were updated.

2 Attempts to describe the properties of excited states using finite energy
sum rules, that is, attributing a finite duality interval to each sequential
resonance, were made already quite some time ago; see [25-28].
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The plan of the paper is as follows. In Sect. 2 we out-
line various procedures of constraining and/or estimating the
decay constants of the first radially excited states using the
sum rules. In Sect. 3 we present the numerical analysis. In
Sect. 4 we summarize the results and discuss their possible
applications.

2 Including radial excitations in the sum rules

In what follows, we consider QCD sum rules for the heavy-
light pseudoscalar (JP =07) and vector (J¥ = 17) mesons,
which are, respectively, obtained from the following corre-
lation functions:

Ms(q) = i / dx 01T (s () 2 (0)}10) (1)

and

Mu(g) =i / d*x (01T { . (x) /. (0)}]0)

= (_ 8;wq2 + qMQV)ﬁT(qz) + CIMCIVHL(CIZ) s
2

where js = (mg+my)qiysQ and j, = qy, Q are the inter-
polating quark currents, Q = ¢, b and ¢ = u,d, s are the
quark fields with finite quark masses defined in MS-scheme.
In (2), only J© = 1~ states contribute to the invariant ampli-
tude multiplying the transverse kinematic structure, and we
define IT7 (¢2) = ¢*T7(¢%). The decay constants of ground-
state mesons H = {B, D} and H* = {B*, D*} are defined
in a standard way,

(OLjsIH (@) = m3; fu. (OljulH*(@)) = mp+e ) fre.

3)
where e,(LH*) is the polarization vector of H*. The same def-
initions are used for the decay constants fy and f,.. of the
radially excited states H' and H * with the masses m g and
m s respectively.

The correlation functions are calculated at q2 < sz,
using OPE which contains the perturbative part with O (a?)
(NNLO) accuracy and the vacuum condensate contributions
up to dimension d = 6:

nE g% =188 @A + MY @) + 15e @D . @
In the above, the quark condensate contribution (including
the NLO terms calculated in [29]) and the sum of gluon,
quark-gluon and four-quark condensate contributions with
dimensions d = 4, 5, 6 have, respectively, the indices (gq)
and (d456). The expressions entering the OPE (4) can be
found in [29] and we will not repeat them here for brevity.
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Turning to the hadronic representations of the correla- - m% < s
tion functions, we modify them, explicitly separating the first ., ampe M [ + 17 H/m 1% / dse m*
radial excitation from the spectrum of heavy-light states. The (m e +mp)?
hadronic spectral densities of the correlation functions then r
. mH/ H'
get the following form: X
T [(s —m? ,)2 + mH F%,,]
1
ps(s) = —ImTls(s) = mi; f8(s —my) = A2 55 + 080 ) + ™ iy, )
b4
S, f2 W e r s
m ’ 4 7 _72
O [(m2, — )2+ T2,m2,] Fimigee” M+ [ H* / dse
+ 5450 = (me +mp)?) ®) (mitme )
% mH*’ FH*’
—m? )2 2
and big [(s my )"+ mH*, FH*/]
1 ry(pert) 412 ~H (Gq)  p g2 (d456) y 12
pr(s) = —ImII7(s) = m2p 2.8(s — m2) +m2 2, =117 (M~ )—H'I (M )+1'I "(M?y,
b4 H (10)
« FH*/ m H*/
T [(mz L —$)24+T2 ] where the shorthand notation
H* HY H*
~h S0
+p ' ()0(s — (mu +mp)?), (6)
H(Tpf;;) (M?, 50) = / ds /M T"(‘;r;)( ) (11)

where P is the light pseudoscalar meson (pion or kaon). For
the excited resonances we assume a Breit—-Wigner (BW) form
of the spectral density with a constant total width. The depen-
dence on the width and the modification of the BW form
with an energy-dependent width will also be investigated.
The spectral densities ,5/51 7 (s) include the contributions of
the excited states located above the first radial excitation and
the continuum states. The latter start from the two-hadron
thresholds s = (mp+ + mp)*> (s = (my + mp)?) in the
pseudoscalar (vector) channel. For pseudoscalar channels
we take the decay H — H™* P as a physical process giving
the threshold. For the vector channel we chose the process
H* — HP. Note that the widths of the excited resonances
H®' are generated by their strong couplings to the contin-
uum states, hence a part of the continuum contribution is
effectively included in the radially excited resonance terms
in the above spectral densities.

Our main assumption is that the semilocal quark—hadron
duality approximation remains valid after isolating the
excited state from the hadronic sum:

pgpert) ()0(s — 35y, (7N
PP (o 5Ty, ®)

PL($)0(s — (mp+ +mp)?) =
PR ($)0(s — (my +mp)?) =

where p(pert) (s) =(/m) Im 1'[<pe )(s) is the spectral density

of the perturbative loop contributions to the OPE and s NH “is

the effective threshold. The latter parameter is expected to be
larger than the one used in the conventional sum rules where
only the ground state is separated from the hadronic sum.
After applying the above duality ansatz and Borel transfor-
mation, the resulting sum rules are:

(mo+my)?

is used and the Borel-transformed correlation function is
denoted as ﬁT(5)(M2).

The masses and total widths of excited mesons H' and
H* will be specified in the next section using experimen-
tal data on charmed states and heavy-quark symmetry rela-
tions. As usual in the sum rule analysis, one has to adopt
an optimal interval of the Borel parameter values AM? =
{M2. + M2}, where the lower (upper) boundary is chosen
so that within this interval the OPE is reliable (the continuum
contribution remains subleading). After that the above sum
rules can be used to estimate the meson decay constants.

As a starting point we fix the decay constants of the
ground states. We use the decay constants fy and fg+
obtained in [29] from conventional QCD sum rules (where
the first excitation is included in the duality ansatz). Note that
within uncertainties these values are in agreement with more
accurate recent results from lattice QCD and also with the
decay constants of charmed mesons extracted from exper-
iment. Hence, lattice and/or experimental input values for
the ground-state decay constants can equally well be used.
After fixing the input values for the masses and ground-state
residue, the two unknown parameters remain in each sumrule
(9) or (10): the decay constant f, .y of the excited state we

are interested in and the new effective threshold 561 “. Putting
the latter threshold to infinity, one immediately obtains the
upper bound for fy or f,... This bound is based on the posi-
tivity of all contributions to the hadronic spectral density and
is independent of the duality approximation.

To employ the sum rules (9) and (10), while fixing the
ground-state decay constants, one could try to follow the
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standard procedure (see e.g., [29]): adjusting the effective
threshold to the mass of the excited state. The mass squared
of the resonance can be calculated by dividing the sum rule
differentiated over (—1/M?) by the original sum rule. How-
ever, this procedure demands a very accurate knowledge of
the excited meson mass, and practically only works in the
zero width approximation when the spectral density of the
excited state reduces to a delta function. Hence, in our numer-
ical analysis presented below we use two different proce-
dures:

(D) The decay constants fp and f; .y and the effective

threshold Eéf “ are fitted simultaneously. To this end for each
separate heavy-light channel, we minimize the squared dif-
ference between the Lh.s. and r.h.s. of the sum rule summed
over several points within AM?. E.g., for the pseudoscalar
heavy-light meson channel we fit the values fy, fg’ and ’svéq
from

2

1

2
M

- Y?
fhmye M+ fhmie Mi

m

e

)

2

(A8 2 5+ T )+ TS0 () || =min,

(12)

where for brevity the width of the excited state is neglected
being included in the numerical analysis. A similar mini-
mization procedure is used for the vector meson channel.

(IT) The ground-state contribution is eliminated from the
sum rule. This is done, multiplying the correlation function
by the factor (m%_l(*) —¢?) before applying the Borel transfor-
mation. An equivalent procedure is to act with the differential
operator [W‘Mz) —i—mil(*)] on the sum rules (9) and (10). The
correlation function is accordingly modified, so that the per-
turbative part (11) contains an additional factor (m%i(*) — )
under the integration. The resulting sum rule relations are
then used to fit the decay constant of the excited state and
the effective threshold with the minimization similar to (12)
where now only the excited-state contribution is present.

We emphasize that the method used in this paper goes
beyond the conventional sum rule technique. E.g., in the
procedure (I) described above, the two decay constants and
effective threshold are simultaneously fitted to the Borel-
transformed correlation function. Hence, cautiously, one can-
not exclude that a “systematic” uncertainty related to the
quark-hadron duality is larger than in the usual sum rules.
Still, due to the positivity of the hadronic spectral function,
a cancelation between ground- and excited-state contribu-
tions in the sum rule cannot take place, hence a significantly
biased estimate of decay constants is excluded. Furthermore,
an important indication of the reliability is provided if both
procedures (I) and (IT) reproduce reasonably close values for
the decay constant of a radially excited state.

@ Springer

3 Numerical estimates

The input parameters in the OPE on the r.h.s. of the sum
rules (9) and (10) include the quark masses, strong cou-
pling and condensate densities. We adopt the same values
as in Table I of [29] where one can find the detailed discus-
sion and relevant references. In particular, we use the MS
values of the quark masses: myp(mp) = 4.18 = 0.03 GeV,
me(me) = 1.2754+0.025 GeV, m;(2GeV) = 95+ 10 MeV,
the strong coupling os(Mz) = 0.1184 £ 0.0007, and the
quark condensate density (gq)(2 GeV) = — (277ﬂ(2) MeV)3.
We adopt the same default renormalization scale © = 1.5
GeV (u = 3 GeV) for the c-quark (b-quark) correlation func-
tion as in [29] allowing further to vary it within the intervals
1.3 GeV+3GeV (3GeV =+ 5GeV). The interval of the Borel
parameter squared used in the sum rules for charmed mesons
is M? = 2.5 +3.5GeV?. We also vary itto M?> = 2.0 = 3.0
GeV? and M? = 3 + 4 GeV? in order to estimate the related
uncertainty of the results. For the bottom mesons we use
M? = 6.0 + 8.0 GeV? as a default interval, shifting it to
M? =5.5+7.5GeV? and M? = 6.5 - 8.5 GeV? for uncer-
tainty estimates. The default Borel intervals still satisfy the
criteria mentioned in the previous section although they are
shifted to somewhat larger values with respect to the intervals
used in [29]. This is done on purpose in order to enhance the
contributions of the excited states.

In the hadronic part of the sum rule the masses and
total widths of the three excited charm mesons are taken
from experiment [10] and collected in Table 1. In particular,
let us mention that the BaBar collaboration [11] observed
two candidates for the radially excited charmed mesons:
D(2550) with JP€ = 0~ and D*(2600) with JF€ = 1~.
The charmed-strange radially excited state D¥'(2700) with
JP = 1= was observed by several experiments [10,12,13].
To specify the mass of the remaining charmed-strange pseu-
doscalar meson we use an estimate

(13)

relying on the SU(3) s; symmetry for the excitation energy.
For the radially excited B-mesons it is conceivable to apply
simple relations valid in the heavy-quark limit:

mD; — mp %mD/ —mp,

mB(*)/ - mB(*) ~ mD(*)/ - mD(*) . (14)

®) ® ©) ©

The estimated masses of excited hadrons are shown under-
lined in Table 1 and compared to the quark-model estimates
from Ref. [19]. Note that quark-model predictions are for
excited charmed mesons systematically larger than the avail-
able experimental values and for bottom mesons systemat-
ically smaller than the masses estimated from heavy-quark
symmetry relations. The accuracy of symmetry relations for
B-mesons is expected to be higher than for charmed mesons
since the corrections are of O(1/m o). The recently observed
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Table1 Masses and total widths of the first radially excited heavy-light
mesons and the mass shifts with respect to the ground-state mesons. The
underlined masses and widths are our estimates for the yet unobserved

resonances. The quark-model predictions [19] are shown in the last
column

| HY | mgy MeV] Ty [MeV] | e — my MeV] | m@, MoV |
D' | 253948 130 £ 18 [10, 11] 669 + 8 2581
DY | 2612 +6 93 + 14 [10, 11] 601 + 6 2632
D) | 2618 £ 50 100 4 50 650 £ 50 2688
DY | 2009 +4 1174+ 13 [10] 597 + 4 2731
B | 5929 + 50 5890
B | 5975 4 50 100 + 50 650 & 50 2900
B, | 6017 £50 |~ - 5976
BY | 6065 & 50 5992

state B(5970) [ 14] interpreted as an excitation with J P—1-,
nicely coincides with B*'-meson predicted from (14) with
an estimated mass m g« = 5,975 MeV. Hence, the relations
based on heavy-quark symmetry seem to be reliable. We add
450 MeV uncertainty to the central values of the estimates
(14) to allow for a very conservative error. Furthermore, for
the yet unknown total widths we assume a rather broad inter-
val between 50 and 150 MeV which is in the ballpark of
measured total widths of charmed mesons. Note that an accu-
rate prediction of the total widths of radially excited states
is a difficult task because several channels of strong (flavor-
conserving) decays with the corresponding strong couplings
contribute. In future, when the masses, branching fractions
and total widths of all radially excited heavy-light mesons
will be measured, one can substantially refine the above
input.

The results for the decay constants for heavy-light mesons
predicted from QCD sum rules (9) and (10) are collected in
Table 2. In the first column we quote the decay constants of
ground-state mesons obtained in [29]. We use these constants
as inputs while obtaining the upper bounds for the decay
constants of excited states which are independent of duality
assumption. These bounds are calculated putting E‘éf “ 0
in the sum rules (9) and (10). For each bound the maximal
value is determined within the optimal Borel interval. To
this value we also add the uncertainty obtained after varying
the parameters in the sum rules. The resulting bounds are
presented in the last column of Table 2. We see that the bounds
are somewhat restrictive for the charmed mesons, but not for
bottom mesons.

Our main numerical results obtained from the fit pro-
cedures (I) and (II) described in the previous section are
also shown in Table 2. Remarkably, these two quite differ-
ent procedures predict consistent values of the decay con-
stants of excited mesons. Most importantly, the ground-

state decay constants obtained from the fit (I) are very
close to the ones obtained in [29] from conventional sum
rules, providing a cross-check of our calculation and ensur-
ing the validity of quark—hadron duality beyond the ground
state.

The uncertainties quoted in Table 2 originate from: (a) the
variation of all input parameters in the OPE; (b) the shift of
the M? intervals as explained above; (c) the mean squared
fit error (reflecting the uncertainty induced by duality thresh-
old); (d) the variation of the masses of excited states and
widths within the intervals shown in Table 1. Note that we
prefer a rather conservative estimate and do not account for
correlations between separate uncertainties adding them all
in quadrature.

The estimated uncertainties for the ground-state decay
constants obtained here and in [29] are in the same ball-
park. For radially excited states the uncertainties of decay
constants are intuitively expected to be larger than for the
ground states. In fact, the contributions of excited resonances
to the Borel-transformed correlation function have a smaller
but comparable exponential weight with respect to the ground
state, therefore the uncertainty returned by fit procedures (I)
and (IT) can also be in the same ballpark, as for example in
the case of B’ meson. The actual outcome of our numeri-
cal analysis becomes more transparent in terms of relative
uncertainties, that is, if one divides the total variation quoted
in Table 2 by the value obtained at the central input. These rel-
ative uncertainties vary from about 12 % for the B’-meson
up to 40 % for the D¥ and BZ;) mesons. Meanwhile, the
corresponding uncertainties for all heavy-light ground states
do not exceed 15 %. Note that the “systematic” uncertainty
caused by quark—hadron duality approximation, which is dif-
ficult to quantify on the basis of the input parameter varia-
tions, can also be somewhat larger for the decay constants of
the excited states.
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Table 2 Decay constants of charmed and bottom mesons obtained from QCD sum rules and the corresponding effective thresholds

Meson Ref. [29] Procedure (I) Procedure (IT) Upper bound
fao MeV)  fye MeV)  fuw MeV)  FT(GeVE)  fye MeV) ST (GeVE) fer (MeV)
DO 201113 19478 137119 7.24 138739 7.24 189
p!’ 238+53 23017 14313 7.48 146132 7.49 219
D*O) 242+29 235+ 182112 7.43 183113 7.44 275
D" 293+19 279+2) 174422 7.87 178429 7.88 265
BO 20717 20018 163119 36.75 16619, 36.78 279
B! 242717 234113 17411 37.72 178419 37.75 320
B*O) 210719 208112 163133 36.70 16575 36.71 314
B0 25171 244713 190747 38.58 194737 38.61 325
Table 3 Separate uncertainties
for decay constants of Meson Aparam A2 Afit Ar Ay,
lhe s sles sppying e D TN I M R o) B o) <1 (< %1
procedure (1) (ID). All numbers 55 (%) e ) ) S )
D () () 50 a0 <+l (<+1D)
Dy v ) 5 () 50 50 <#l(<#£D
B S0 50 1) ol ) a0
B, () o () 50 1o Cho) a0
B (o) 50 ey 50 50
By D 5 50 50 a0

In Table 3 we present the error budget of our predic-
tions in more detail. The largest uncertainties originate from
the renormalization scale and quark mass variation, added
in quadrature together with other input parameters in the
OPE and denoted as Aparam in Table 3. The variations of
decay constants introduced by the choice of the Borel win-
dow (A2), fit procedure (Afi), uncertain masses (Ap,,,)
and widths (Ar) of the excited resonances are smaller.

As an alternative to a constant total width for excited
heavy-light mesons, one can also use an energy-dependent
width taking into account the hadronic continuum thresh-
old. To investigate the influence of this effect we have
inserted /sT .y (s) instead of m I ey in the Breit—
Wigner ansatz for spectral densities (5) and (6) where for
the s-dependent width the model [30] has been adopted (see,
e.g., also [31]), e.g., for H*:

r,.(s)=T "
H*/ S) = H*/ 3 ) 3
s \AMmmy,mp)

In the above, A(a, b, ¢) = a’+b*+c*—2ab—2bc—2ac
and the kinematical factor originates from the p-wave phase

@ Springer

space of the decay H *  HP.The analogous formula is
valid for the excited pseudoscalar mesons where the width is
dominated by the H' — H*P decay. Altogether, the influ-
ence of the total width on the decay constants of excited
mesons obtained from the sum rules is small. To give an
example, the D; -meson decay constant obtained form the fit
procedure (I) for the central input is f p. = 143 + 8 MeV,
where here the uncertainty corresponds to varying only the
total width within the interval 100 £ 50 MeV. This value
shifts to fD; = 148 £ 16 MeV if the energy-dependent
width (15) is used in the fit. Note that neglecting the total
width of D;. altogether yields fD; = 128 MeYV, a relatively
small change.

Importantly, as seen from Table 2, the decay constant
of a heavy-light excited meson is predicted systematically
smaller than for its ground state. To investigate the origin of
this difference we present in Table 4 the results of the numer-
ical procedure (I) where separate contributions to OPE are
switched off. We notice that when only the perturbative con-
tributions are left and condensate contributions are neglected,
the decay constants become numerically closer.

This brings us to the conclusion that the nonperturba-
tive effects, most of all the leading contribution of the
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Table 4 Decay constants of the D and D’ mesons from the sum rules
with different approximations for OPE (procedure (I), central/default
input)

OPE approximation fp MeV)  fpr (MeV)
Perturbative LO 120 123
Perturbative LO+NLO+NNLO 150 177
Perturbative + (gq)(LO+NLO) 190 142
Perturbative + (Gq)(LO+NLO) + (d456) 194 137

quark condensate effectively redistribute the spectral den-
sity of the correlation function so that the ground-state con-
tribution gets enhanced and the first radial excitation sup-
pressed.

4 Conclusion

In this paper we have attempted to determine the decay con-
stants of first radially excited heavy-light mesons. To this end,
modified QCD sum rules were obtained, in which, in addition
to the ground-state meson contribution also the excited state
is included being separated from the rest of the hadronic
spectral density. We applied two different procedures, one
of them independent of the ground-state contribution. The
results of both procedures are consistent with each other and
with the standard sum rule calculation [29] of the ground-
state decay constants. This consistency justifies the valid-
ity of the quark—hadron duality approximation beyond the
ground-state hadron in the correlation function of heavy-light
currents. In future, the same technique can be used for other
excited hadrons with various flavor and spin-parity quantum
numbers. Also studies of non-diagonal two-point correlation
functions can be useful, with two different currents having the
same quantum numbers but different quark-gluon content.
Here, one will employ the conjecture that excited hadronic
states have a larger coupling to quark—antiquark—gluon cur-
rents.

Our results reveal a relative suppression of the decay con-
stants of the radially excited states with respect to the ground
state. This difference can be traced to nonperturbative effects.
In future, more precise data on radially excited charmed and
bottom mesons will allow us to improve the accuracy of our
predictions.

The decay constant of the excited charmed meson D’ pre-
dicted here agrees within uncertainties with the recent lattice
QCD result fpr = 117 £ 25 MeV obtained in [16]. On the
other hand, we cannot confirm the estimate f pv ~ 300 MeV
obtained in [15].

The results obtained in this paper can be used in sev-
eral ways. First, it is possible to extend hadronic represen-
tations in various light-cone sum rules (LCSR) in order to

try alternative patterns of quark—hadron duality, beyond one-
resonance approximation. E.g., in the LCSR’s for B — «
form factors, in the channel of the B-meson interpolating
current, one can include in the hadronic spectral density the
term involving the first radial excitation B’ and the latter
involves the decay constant fp/. Furthermore, as already
mentioned, one needs accurate information on the excited
charmed states including their decay constants for the stud-
ies of B — D’ form factors [15,16]. A promising source of
information on charmed resonances are nonleptonic decays
of B mesons to open-charmed final states (see also [16]). For
three-body and four-body B decays accurate Dalitz-plot anal-
yses are among the primary goals of current B-physics stud-
ies. These analyses demand reliable resonance-saturation
models including the contributions of radially excited open-
charmed states. For the amplitudes of these modes factor-
ization estimates include the decay constants multiplied by
heavy-to-light form factors. To bring just one example, the
amplitude of B® — D* ~x* decay contributes to the final
state of three-body decay B — DK ~m+. The factorizable
partof BY — D;k/_rr"’ is color-enhanced, being proportional
to the product of the B — m form factor at the momentum
transfer q2 = mZD*, and f;. . For the latter, the result of this
study can immediately be used.
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