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Abstract The experimental value for the isospin amplitude
ReA2 in K → ππ decays has been successfully explained
within the standard model (SM), both within the large N
approach to QCD and by QCD lattice calculations. On the
other hand within the large N approach the value of ReA0

is by at least 30 % below the data. While this deficit could
be the result of theoretical uncertainties in this approach
and could be removed by future precise QCD lattice cal-
culations, it cannot be excluded that the missing piece in
ReA0 comes from new physics (NP). We demonstrate that
this deficit can be significantly softened by tree-level FCNC
transitions mediated by a heavy colourless Z ′ gauge boson
with a flavour-violating left-handed coupling �sd

L (Z
′) and

an approximately universal flavour diagonal right-handed
coupling �qq

R (Z
′) to the quarks. The approximate flavour

universality of the latter coupling assures negligible NP con-
tributions to ReA2. This property, together with the break-
down of the GIM mechanisms at tree level, allows one to
enhance significantly the contribution of the leading QCD-
penguin operator Q6 to ReA0. A large fraction of the missing
piece in the �I = 1/2 rule can be explained in this man-
ner for MZ ′ in the reach of the LHC, while satisfying the
constraints from εK , ε′/ε, �MK , LEP-II and the LHC. The
presence of a small right-handed flavour-violating coupling
�sd

R (Z
′) � �sd

L (Z
′) and of enhanced matrix elements of

�S = 2 left–right operators allows one to satisfy simulta-
neously the constraints from ReA0 and �MK , although this
requires some fine-tuning. We identify the quartic correlation
between Z ′ contributions to ReA0, ε′/ε, εK and �MK . The
tests of this proposal will require much improved evaluations
of ReA0 and �MK within the SM, of 〈Q6〉0 as well as pre-
cise tree-level determinations of |Vub| and |Vcb|. We present
correlations between ε′/ε, K + → π+νν̄ and KL → π0νν̄

with and without the �I = 1/2 rule constraint and gener-

a e-mail: jennifer.girrbach@gmail.com

alise the whole analysis to Z ′ with colour (G ′) and Z with
FCNC couplings. In the latter case no improvement on ReA0

can be achieved without destroying the agreement of the SM
with the data on ReA2. Moreover, this scenario is very tightly
constrained by ε′/ε. On the other hand, in the context of the
�I = 1/2 rule G ′ is even more effective than Z ′: it provides
the missing piece in ReA0 for MG ′ = (3.5–4.0)TeV.
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1 Introduction

The non-leptonic KL → ππ decays have played already for
almost 60 years an important role in particle physics and were
instrumental in the construction of the standard model (SM)
and in the selection of allowed extensions of this model. The
three pillars in these decays are:

• The real parts of the amplitudes AI for a kaon to decay
into two pions with isospin I , which are measured to be
[1]

ReA0 = 27.04(1)× 10−8 GeV,

ReA2 = 1.210(2)× 10−8 GeV, (1)

and expressing the so-called �I = 1/2 rule [2,3],

R = ReA0

ReA2
= 22.35. (2)

• The parameter εK , a measure of indirect CP violation in
KL → ππ decays, which is found to be

εK = 2.228(11)× 10−3eiφε , (3)

where φε = 43.51(5)◦.

• The ratio of the direct CP violation and indirect CP viola-
tion in KL → ππ decays measured to be [1,4–6]

Re(ε′/ε) = (16.5 ± 2.6)× 10−4. (4)

Also the strongly suppressed branching ratio for the rare
decay KL → μ+μ− and the tiny experimental value for
the KL − KS mass difference

(�MK )exp = 3.484(6)10−15 GeV = 5.293(9)ps−1 (5)

were strong motivations for the GIM mechanism [7] and in
turn allowed one to predict not only the existence of the charm
quark but also approximately its mass [8].

While due to the GIM mechanism εK , ε′/ε and �MK

receive contributions from the SM dynamics first at one-
loop level and as such are sensitive to NP contributions, the
�I = 1/2 rule involving tree-level decays has been expected
already for a long time to be governed by SM dynamics.
Unfortunately due to non-perturbative nature of non-leptonic
decays precise calculation of the amplitudes ReA0 and ReA2

do not exist even today. However, a significant progress in
reaching this goal over last 40 years has been made.

Indeed, after pioneering calculations of short distance
QCD effects in the amplitudes ReA0 and ReA2 [9,10],
termed in the past an octet enhancement, and the discovery
of QCD-penguin operators [11], which in the isospin limit
contribute only to ReA0, the dominant dynamics behind the
�I = 1/2 has been identified in [12]. To this end an ana-
lytic approximate approach based on the dual representation
of QCD as a theory of weakly interacting mesons for large
N , advocated previously in [13–16], has been used. In this
approach �I = 1/2 rule for K → ππ decays has a sim-
ple origin. The octet enhancement through the long but slow
quark–gluon renormalisation group evolution down to the
scales O(1 GeV), analysed first in [9,10], is continued as
a short but fast meson evolution down to zero momentum
scales at which the factorisation of hadronic matrix elements
is at work. The recent inclusion of lowest-lying vector meson
contributions in addition to the pseudoscalar ones and of
NLO QCD corrections to Wilson coefficients in a momen-
tum scheme improved significantly the matching between
quark–gluon and meson evolutions [17]. In this approach
QCD-penguin operators play a subdominant role but one can
uniquely predict an enhancement of ReA0 through QCD-
penguin contributions. Working at scales O(1 GeV) this
enhancement amounts to roughly 15 % of the experimen-
tal value of ReA0, subject to uncertainties to which we will
return below.

In the present era of the dominance of non-perturbative
QCD calculations by lattice simulations with dynamical
fermions, which have a higher control over uncertainties
than the approach in [12,17], it is very encouraging that the
structure of the enhancement of ReA0 and suppression of
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ReA2, identified already in [12], has also been found by RBC-
UKQCD collaboration [18–21]. The comparison between the
results of both approaches in [17] indicates that the experi-
mental value of the amplitude ReA2 can be well described
within the SM, in particular, as the calculations in these
papers have been performed at rather different scales and
using a different technology.

On the other hand both approaches cannot presently obtain
a sufficiently large value of ReA0. Within the dual QCD
approach one finds then R = 16.0 ± 1.5, while the first
lattice results for ReA0 imply R ≈ 11. However, the latter
result has been obtained with non-physical kinematics and it
is to be expected that larger values of R, even as high as its
experimental value in (2), could be obtained in lattice QCD
in the future.

Presently the theoretical value of ReA0 within dual QCD
approach is by 30 % below the data and even more in the
case of lattice QCD. While this deficit could be the result
of theoretical uncertainties in both approaches, it cannot be
excluded that the missing piece in ReA0 comes from NP. In
this context we would like to emphasise that, although the
explanation of the dynamics behind the�I = 1/2 rule is not
any longer at the frontiers of particle physics, it is important to
determine precisely the room for the NP contribution left not
only in ReA0 but also ReA2. From the present perspective
only lattice simulations with dynamical fermions can pro-
vide precise values of ReA0,2 one day, but this may still take
several years of intensive efforts by the lattice community
[22–24]. Having precise SM values for ReA0,2 would give
us two observables which could be used to constrain NP. Our
paper demonstrates explicitly the impact of such constraints.

In this context we would like to strongly emphasise that,
while the dominant part of the�I = 1/2 rule originates in the
SM dynamics, it is legitimate to ask whether some subleading
part of it comes from much shorter distance scales and we
can either exclude this possibility or demonstrate that this
indeed could be the case under certain assumptions.

In what follows our working assumption will be that
roughly 30 % of ReA0 comes from some kind of NP which
does not affect ReA2 in order not to spoil the agreement of
the SM with the data. As the missing piece in ReA0 is by
about 8 times larger than the measured value of ReA2, the
required NP must have a particular structure: tiny or absent
contributions to ReA2 and at the same time large contribu-
tions to ReA0. Moreover, it should satisfy other constraints
coming from εK , �MK , ε′/ε and rare kaon decays.

As K → ππ decays originate already at tree level, we
expect that NP contributing to these decays at one-loop level
will not help us in reaching our goal. Consequently we have
to look for NP that contributes to K → ππ decays already at
tree level as well. Moreover, in order not to spoil the agree-
ment of the SM with the data for ReA2 only Wilson coeffi-
cients of QCD-penguin operators should be modified. In this

context we recall that in [25] an additional enhancement (with
respect to previous estimates) of the QCD-penguin contribu-
tions to ReA0 has been identified. It comes from an incom-
plete GIM cancellation above the charm quark mass. But as
the analyses in [12,17] show, this enhancement is insufficient
to reproduce fully the experimental value of ReA0.

However, the observation that the breakdown of GIM
mechanism and the enhanced contributions of QCD-penguin
operators could in principle provide the missing part of the
�I = 1/2 rule gives us a hint of what kind of NP could
do the job here. We have to break the GIM mechanism at a
much higher scale than the scales O(mc) and allow the QCD
renormalisation group evolution to enhance the Wilson coef-
ficient of the leading QCD-penguin operator Q6 by a larger
amount than is possible within the SM.

It then turns out that a tree-level exchange of heavy neu-
tral gauge boson, colourless (Z ′) or carrying colour (G ′), can
provide a significant part of the missing piece of ReA0 but the
couplings of these heavy gauge bosons to SM fermions must
have a very special structure in order to satisfy existing con-
straints from other observables. Let us assume MZ ′(MG ′) to
be in the ballpark of a few TeV and let us denote left-handed
(LH) and right-handed (RH) couplings of Z ′(G ′) to two SM
fermions with flavours i and j , as in [26], by �i j

L ,R(Z
′).

Then we find that, in the mass eigenstate basis for all parti-
cles involved, a Z ′ or G ′ with the following general structure
of its couplings is required:

• Re�sd
L (Z

′) = O(1) and Re�qq
R (Z

′) = O(1) in order
to generate a Q6 penguin operator with sizable Wilson
coefficient in the presence of a heavy Z ′.

• The diagonal couplings �qq
R (Z

′) must be flavour univer-
sal in order not to affect the amplitude ReA2. But this uni-
versality cannot be exact, as this would not allow one to
generate a small Re�sd

R (Z
′) = O(10−3) coupling, which

is required in order to satisfy the constraint on �MK in
the presence of Re�sd

L (Z
′) = O(1).

• Im�sd
L (Z

′) and Im�qq
R (Z

′) must be typically O(10−3 −
10−4) in order to be consistent with the data on εK and
ε′/ε.

• The couplings to the leptons must be sufficiently small
in order not to violate the existing bounds on rare kaon
decays. This is automatically satisfied for G ′.

• Finally, �uu
L (Z

′) must be small in order not to generate
large contributions to the current–current operators Q1

and Q2 that could affect the amplitude ReA2.

We observe that indeed the structure of the Z ′ or G ′ cou-
plings must be rather special. But in the context of ε′/ε it
is interesting to note that in this NP scenario, as opposed
to many NP scenarios, there is no modification of the Wil-
son coefficients of electroweak penguin operators up to tiny
renormalisation group effects, which can be neglected for all
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practical purposes. The NP part of ε′/ε involves only QCD-
penguin operators, in particular Q6, and the size of this effect,
as we will demonstrate below, is correlated with the NP con-
tribution to ReA0, εK and �MK .

Now comes an important point. While the SM contribution
to ReA0 practically does not involve any CKM uncertainties,
this is not the case of εK , ε′/ε and branching ratios on rare
kaon decays which all involve potential uncertainties due to
present inaccurate knowledge of the elements of the CKM
matrix |Vub| and |Vcb|. Therefore there are uncertainties in the
room left for NP in these observables and these uncertainties
in turn affect indirectly the allowed size of the NP contri-
bution to ReA0. Therefore it will be of interest to consider
several scenarios for the pair |Vub| and |Vcb| and investigate
in each case whether Z ′ couplings required to improve the
situation with the �I = 1/2 rule could also help in explain-
ing the data on εK , ε′/ε,�MK and rare kaon decays in case
the SM would fail to do it one day. Of course presently one
cannot reach clear cut conclusions on these matters due to
hadronic uncertainties affecting εK , ε′/ε and �MK but it is
expected that the situation will improve in this decade.

In order to be able to discuss implications for K + →
π+νν̄ and KL → π0νν̄ we will assume in the first part of
our paper that Z ′ is colourless. This is also the case analysed
in all our previous Z ′ papers [26–33]. Subsequently, we will
discuss how our analysis changes in the case of G ′. The fact
that in this case G ′ does not contribute to K + → π+νν̄ and
KL → π0νν̄ allows one already to distinguish this case from
the colourless Z ′ but also the LHC bounds on the couplings of
such bosons and the NP contributions to ReA0, ε′/ε, εK and
�MK are different in these two cases. In our presentation we
will also first assume exact flavour universality for �qq

R (Z
′)

and �qq
R (G

′) couplings in order to demonstrate that in this
case the experimental constraints from ReA0 and�MK can-
not be simultaneously satisfied. Fortunately, already a very
small violation of flavour universality in�qq

R (Z
′) or�qq

R (G
′)

allows one to cure this problem because of the enhanced
matrix elements of left–right operators contributing in this
case to �MK .

Our paper is organised as follows. In Sect. 2 we briefly
describe some general aspects of Z ′ and G ′ models consid-
ered by us. In Sect. 3 we present general formulae for the
effective Hamiltonian for K → ππ decays including all
operators, list the initial conditions for Wilson coefficients at
μ = MZ ′ for the case of a colourless Z ′ and find the expres-
sions for ReA0 and ε′/ε that include SM and Z ′ contributions.
In Sect. 4 we discuss briefly εK , �MK , K + → π+νν̄ and
KL → π0νν̄, again for a colourless Z ′, referring for details
to our previous papers. In Sect. 5 we present numerical analy-
sis of ReA0, ε′/ε and K + → π+νν̄ and KL → π0νν̄ taking
into account the constraints from εK and �MK . We con-
sider two scenarios. One in which we impose the �I = 1/2
constraint (scenario A) and one in which we ignore this

constraint (scenario B). These two scenarios can be clearly
distinguished through the rare decays K + → π+νν̄ and
KL → π0νν̄ and their correlation with ε′/ε. In Sect. 6 we
repeat the full analysis for G ′ and in Sect. 7 for the Z boson
with flavour-violating couplings. We conclude in Sect. 8.

2 General aspects of Z′ and G′ models

The present paper is the continuation of our extensive study
of NP represented by a new neutral heavy gauge boson (Z ′)
in the context of a general parametrisation of its couplings
to the SM fermions and within specific models like the 331
models [26–33]. The new aspect of the present paper is the
generalisation of these studies to K → ππ decays with the
goal to answer three questions:

• Whether the existence of a Z ′ or G ′ with a mass in the
reach of the LHC could have an impact on the �I = 1/2
rule, in particular on the amplitude ReA0.

• Whether such gauge bosons could have sizable impact on
the ratio ε′/ε.

• What is the impact of ε′/ε constraint on FCNC couplings
of the SM Z boson.

To our knowledge the first question has not been addressed
in the literature, while selected analyses of ε′/ε within mod-
els with tree-level flavour changing neutral currents can be
found in [34,35]. However, in these papers NP entered ε′/ε
through electroweak penguin operators while in the case of
Z ′ scenarios considered here only QCD-penguin operators
are relevant. Concerning the last point we refer to earlier anal-
yses in [36,37]. The present paper provides a modern look at
this scenario and in particular investigates the sensitivity to
the CKM parameters. A review of Z ′ models can be found in
[38] and a collection of papers related mainly to Bs,d decays
can be found in [26].

Our paper will deal with NP in K 0–K̄ 0 mixing, K → ππ

and rare K decays dominated either by a heavy Z ′, heavy G ′
or FCNC processes mediated by Z . We will not provide a
complete model in which other fields like heavy vector-like
fermions, heavy Higgs scalars and charged gauge bosons
are generally present and gauge anomalies are properly can-
celled. Examples of such models can be found in [38] and the
331 models analysed by us can be mentioned here [27,33]. A
general discussion can also be found in [39] and among more
recent papers we refer to [40,41]. But none of these papers
discusses the hierarchy of the couplings of Z ′ and G ′ cou-
plings, which is required to make these gauge bosons to be
relevant for the �I = 1/2 rule. Our goal then is to find this
hierarchy first and postpone the construction of a concrete
model to a future analysis.
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Z ′ contributions to ReA0, ReA2 and ε′/ε involve generally
in addition to MZ ′ the following couplings:

�sd
L (Z

′), �sd
R (Z

′), �
qq
L (Z

′), �
qq
R (Z

′), (6)

where q = u, d, c, s, b, t . The same applies to G ′. The diag-
onal couplings can be generally flavour dependent, but as
we already stated above in order to protect the small ampli-
tude ReA2 from significant NP contributions in the process
of modification of the large amplitude ReA0 either the cou-
pling �qq

L (Z
′) or the coupling �qq

R (Z
′) must be approxi-

mately flavour universal. They cannot be both flavour uni-
versal as then it would not be possible to generate large
flavour-violating couplings in the mass eigenstate basis. In
what follows we will assume that�qq

R (Z
′) are either exactly

flavour universal or flavour universal to a high degree still
allowing for a strongly suppressed but non-vanishing cou-
pling �sd

R (Z
′).

For the left-handed couplings it will turn out that�sd
L (Z

′)
= O(1) in order to reach the first goal on our list. Such a
coupling could be in principle generated in the presence of
heavy vectorial fermions or other dynamics at scales above
MZ ′ . In order to simplify our analysis and reduce the number
of free parameters, we will finally assume that �qq

L (Z
′) are

very small. Thus in summary the hierarchy of couplings in
the present paper will be assumed to be as follows:

�sd
L (Z

′) 	 �
qq
L (Z

′), �sd
R (Z

′) � �
qq
R (Z

′),
�sd

L (Z
′) 	 �sd

R (Z
′) (7)

with the same hierarchy assumed for G ′.
Only the coupling �sd

L ,R(Z
′) will be assumed to be com-

plex while as we will see in the context of our analysis the
remaining two can be assumed to be real without particular
loss of generality. We should note that the hierarchy in (7)
will suppress in the case of K → ππ decays the primed
operators that are absent in the SM anyway.

In our previous papers we have considered a number of
scenarios for flavour-violating Z ′ couplings to quarks. These
are defined as follows:

1. Left-handed Scenario (LHS) with complex�sd
L 
= 0 and

�sd
R = 0,

2. Right-handed Scenario (RHS) with complex �sd
R 
= 0

and �sd
L = 0,

3. Left–Right symmetric Scenario (LRS) with complex
�sd

L = �sd
R 
= 0,

4. Left–Right asymmetric Scenario (ALRS) with complex
�sd

L = −�sd
R 
= 0.

Among them only the LHS scenario is consistent with
(7) if �sd

R is assumed to vanish. But as we will demonstrate
in this case it is not possible to satisfy simultaneously the
constraints from ReA0 and �MK . Consequently �sd

R has to

be non-vanishing, although very small, in order to satisfy
these two constraints simultaneously. Thus in the scenarios
considered in our previous papers the status of the�I = 1/2
rule cannot be improved with respect to the SM.

3 General formulae for K → ππ decays

3.1 General structure

Let us begin our presentation with the general formula for
the effective Hamiltonian relevant for K → ππ decays in
the model in question

Heff(K → ππ) = Heff(K → ππ)(SM)

+Heff(K → ππ)(Z ′) (8)

where the SM part is given by [42]

Heff(K → ππ)(SM) = G F√
2

Vud V ∗
us

10∑

i=1

(zSM
i (μ)

+ τ ySM
i (μ))Qi ,

τ = − Vtd V ∗
ts

Vud V ∗
us
,

(9)

and the operators Qi as follows:
Current–Current:

Q1 = (s̄αuβ)V −A (ūβdα)V −A

Q2 = (s̄u)V −A (ūd)V −A
(10)

QCD-Penguins:

Q3 = (s̄d)V −A

∑

q=u,d,s,c,b,t

(q̄q)V −A

Q4 = (s̄αdβ)V −A

∑

q=u,d,s,c,b,t

(q̄βqα)V −A

(11)

Q5 = (s̄d)V −A

∑

q=u,d,s,c,b,t

(q̄q)V +A

Q6 = (s̄αdβ)V −A

∑

q=u,d,s,c,b,t

(q̄βqα)V +A

(12)

Electroweak Penguins:

Q7 = 3

2
(s̄d)V −A

∑

q=u,d,s,c,b,t

eq (q̄q)V +A

Q8 = 3

2
(s̄αdβ)V −A

∑

q=u,d,s,c,b,t

eq(q̄βqα)V +A

(13)

Q9 = 3

2
(s̄d)V −A

∑

q=u,d,s,c,b,t

eq(q̄q)V −A

Q10 = 3

2
(s̄αdβ)V −A

∑

q=u,d,s,c,b,t

eq (q̄βqα)V −A

(14)
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Here,α, β denote colours and eq denotes the electric quark
charges reflecting the electroweak origin of Q7, . . . , Q10.
Finally, (s̄d)V −A ≡ s̄αγμ(1 − γ5)dα .

The coefficients zSM
i (μ) and ySM

i (μ) are the Wilson coef-
ficients of these operators within the SM. They are known
at the NLO level in the renormalisation group improved per-
turbation theory including both QCD and QED corrections
[42,43]. Also some elements of NNLO corrections can be
found in the literature [44,45].

As discussed in the previous section Z ′ contributions to
K → ππ in the class of Z ′ models discussed by us can be
well approximated by the following effective Hamiltonian:

Heff(K → ππ)(Z ′) =
6∑

i=3

(Ci (μ)Qi + C ′
i (μ)Q

′
i ), (15)

where the primed operators Q′
i are obtained from Qi by inter-

changing V − A and V + A. For the sake of completeness we
keep still Q′

i operators even if at the end due to the hierarchy
of couplings in (7), Z ′ contributions will be well approxi-
mated by Qi and the contributions from the Q′

i operators
can be neglected.

Due to the fact that MZ ′ 	 mt the summation over
flavours in (11)–(14) now includes also the top quark. This
structure is valid for both Z ′ and G ′. As the hadronic matrix
elements of Qi do not depend on the properties of Z ′ or G ′,
these two cases can only be distinguished by the values of
the coefficients Ci (μ) and C ′

i (μ). In this and two following
sections we analyse the case of Z ′. But in Sect. 6 we will also
discuss G ′.

The important feature of the effective Hamiltonian in (15)
is the absence of Q1,2 operators dominating the A2 amplitude
and the absence of electroweak penguin operators, which in
some of the extensions of the SM are problematic for ε′/ε. In
our model NP effects in ReA0, relevant for the�I = 1/2 rule
and Im A0, relevant for ε′/ε, will enter only through QCD-
penguin contributions. This is a novel feature when compared
with other scenarios, like the LHT [46] and the Randall–
Sundrum scenarios [34,35], where NP contributions to ε′/ε
are dominated by electroweak penguin operators. In partic-
ular, in the latter case, where FCNCs are mediated by new
heavy Kaluza–Klein gauge bosons, the flavour universality
of their diagonal couplings to quarks is absent due to different
positions of light and heavy quarks in the bulk. Consequently
the pattern of NP contributions to ε′/ε differs from the one
in the models discussed here.

Denoting by �i j
L ,R , as in [26], the couplings of Z ′ to two

quarks with flavours i and j , a tree-level Z ′ exchange gen-
erates in our model only the operators Q3, Q5, Q′

3 and Q′
5

at μ = MZ ′ . The inclusion of QCD effects, in particular the
renormalisation group evolution down to low energy scales,
generates the remaining QCD-penguin operators. In princi-
ple, using the two-loop anomalous dimensions of [42,43]

and the O(αs) corrections to the coefficients Ci and C ′
i at

μZ ′ = O(MZ ′) in the NDR-MS scheme in [47] the full NLO
analysis of Z ′ contributions could be performed. However,
due to the fact that the mass of Z ′ is free and other paramet-
ric and hadronic uncertainties, a leading order analysis of NP
contributions is sufficient for our purposes. In this manner it
will also be possible to see certain properties analytically.

The non-vanishing Wilson coefficients at μ = MZ ′ are
then given at the LO as follows:

C3(MZ ′) = �sd
L (Z

′)�qq
L (Z

′)
4M2

Z ′
,

C ′
3(MZ ′) = �sd

R (Z
′)�qq

R (Z
′)

4M2
Z ′

,

(16)

C5(MZ ′) = �sd
L (Z

′)�qq
R (Z

′)
4M2

Z ′
,

C ′
5(MZ ′) = �sd

R (Z
′)�qq

L (Z
′)

4M2
Z ′

.

(17)

3.2 Renormalisation group analysis (RG)

With these results at hand we will perform RG analysis of NP
contributions at the LO level.1 We will then see that the only
operator that matters at scales O(1 GeV) in our Z ′ models
is either Q6 or Q′

6. This is to be expected if we recall that
at μ = MW the Wilson coefficient of the electroweak pen-
guin operator Q8, the electroweak analog of Q6, also van-
ishes. But due to its large anomalous dimension and enhanced
hadronic K → ππ matrix elements Q8 is by far the dominant
electroweak penguin operator in ε′/ε within the SM, leav-
ing behind the Q7 operator whose Wilson coefficient does
not vanish at μ = MW . Even if the structure of the present
RG analysis differs from the SM one, due to the absence
of the remaining operators in the NP part, in particular the
absence of Q2, much longer RG evolution from MZ ′ and not
MW down to low energies makes Q6 or Q′

6 the winner at
the end. This fact, as we will see, simplifies significantly the
phenomenological analysis of the NP contributions to ReA0

and ε′/ε.
The relevant 4 × 4 one-loop anomalous dimension matrix

γ̂s(αs) = γ̂ (0)s
αs

4π
(18)

can be extracted from the known 6 × 6 matrix [48]. The
evolution of the operators in the NP part is then governed in
the (Q3, Q4, Q5, Q6) basis by

1 The SM contributions are evaluated including NLO QCD corrections.
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γ̂ (0)s =

⎛

⎜⎜⎝

−22
9

22
3 − 4

9
4
3

6 − f 2
9 −2 + f 2

3 − f 2
9 f 2

3
0 0 2 −6

− f 2
9 f 2

3 − f 2
9 −16 + f 2

3

⎞

⎟⎟⎠ , (19)

where f is the number of effective flavours: f = 6 for μ ≥
mt and f = 3 for μ ≤ mc. The same matrix governs the
evolution of primed operators.

In order to see what happens analytically we then assume
first that in the mass eigenstate basis only the couplings�sd

L
and �qq

R are non-vanishing with �qq
R being exactly flavour

universal. While the coefficients of the operators Q3 and Q4

can still be generated through RG evolution, these effects
are very small and can be neglected. Then to an excellent
approximation only the operators Q5 and Q6 matter and the
RG evolution is governed by the reduced 2 × 2 anomalous
dimension matrix given in the (Q5, Q6) basis as follows:

γ̂ (0)s =
(

2 −6
− f 2

9 −16 + f 2
3

)
. (20)

Denoting then by �C(MZ ′) the column vector with compo-
nents given by the Wilson coefficients C5 and C6 atμ = MZ ′
we find their values at μ = mc by means of2

�C(mc) = Û (mc,MZ ′) �C(MZ ′) (21)

where

Û (mc,MZ ′) = Û ( f =4)(mc,mb)Û
( f =5)(mb,mt )

×Û ( f =6)(mt ,MZ ′) (22)

and [49]

Û ( f )(μ1, μ2) = V̂

⎛

⎝
[
αs(μ2)

αs(μ1)

] �γ (0)
2β0

⎞

⎠

D

V̂ −1. (23)

Here V̂ diagonalises γ̂ (0)T ,

γ̂
(0)
D = V̂ −1γ̂ (0)T V̂ (24)

and �γ (0) is the vector containing the diagonal elements of the
diagonal matrix:

γ̂
(0)
D =

(
γ
(0)
+ 0

0 γ
(0)
−

)
(25)

with

β0 = 33 − 2 f

3
. (26)

2 The reason for choosing μ = mc will be explained below.

For αs(MZ ) = 0.1185, mc = 1.3 GeV and MZ ′ = 3 TeV
we have
[

C5(mc)

C6(mc)

]
=
[

0.86 0.19
1.13 3.60

] [
1
0

]

×�
sd
L (Z

′)�qq
R (Z

′)
4M2

Z ′
. (27)

Consequently

C5(mc) = 0.86
�sd

L (Z
′)�qq

R (Z
′)

4M2
Z ′

C6(mc) = 1.13
�sd

L (Z
′)�qq

R (Z
′)

4M2
Z ′

.

(28)

Due to the large (1, 2) element in the matrix (20) and the
large anomalous dimension of the Q6 operator represented
by the (2, 2) element of this matrix, C6(mc) is by a factor
of 1.3 larger than C5(mc) even if C6(MZ ′) vanishes at LO.
Moreover, the matrix element 〈Q5〉0 is colour suppressed,
which is not the case for 〈Q6〉0, and within a good approxi-
mation we can neglect the contribution of Q5. In summary, it
is sufficient to keep only Q6 contribution in the decay ampli-
tude in this scenario for Z ′ couplings.

3.3 The total A0 amplitude

Adding the NP contributions to the SM contribution we find

A0 = ASM
0 + ANP

0 , (29)

with the SM contribution given by

ReASM
0 = G F√

2
λu

10∑

i=1

zSM
i (μ)〈Qi (μ)〉0, (30)

Im ASM
0 = −G F√

2
Imλt

10∑

i=3

ySM
i (μ)〈Qi (μ)〉0. (31)

Here

λi = Vid V ∗
is (32)

is the usual CKM factor. As NP enters only the Wilson coef-
ficients and

〈Q′
i (μ)〉0 = −〈Qi (μ)〉0, (33)

the NP contributions can be included by modifying zi and yi

with i = 3–6 as follows:

�zi (μ) =
√

2

λuG F

(
ReCi (μ)− ReC ′

i (μ)
)

(34)

and

�yi (μ) = −
√

2

Imλt G F

(
ImCi (μ)− ImC ′

i (μ)
)
. (35)
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In the scenario just discussed only the Q6 operator is rel-
evant and we have

ReANP
0 = G F√

2
λu�z6(μ)〈Q6(μ)〉0

= ReC6(μ)〈Q6(μ)〉0 (36)

Im ANP
0 = −G F√

2
Imλt�y6(μ)〈Q6(μ)〉0

= ImC6(μ)〈Q6(μ)〉0, (37)

where we have written two equivalent expressions so that one
can either work with z6 and y6 as in the SM or directly with
the NP coefficient C6. The latter expressions exhibit better
the fact that the NP contributions do not depend explicitly on
the CKM parameters. For the matrix element 〈Q6(μ)〉0 we
will use the large N result [12,17]

〈Q6(μ)〉0 = − 4

[
m2

K

ms(μ)+ md(μ)

]2

(FK − Fπ ) B(1/2)6 ,

(38)

except that we will allow for variation of B(1/2)6 around its

strict large N limit B(1/2)6 = 1. In writing this formula we
have removed the factor

√
2 from formula (97) in [17] in

order to compensate for the fact that our FK and Fπ are
larger by this factor relative to their definition in [17]. Their
numerical values are given in Table 2.

In our numerical analysis we will use for the quark masses
the values from FLAG 2013 [50]

ms(2 GeV) = (93.8 ± 2.4)MeV,

md(2 GeV) = (4.68 ± 0.16)MeV. (39)

Then at the nominal value μ = mc = 1.3 GeV we have

ms(mc) = (108.6 ± 2.8)MeV,

md(mc) = (5.42 ± 0.18)MeV. (40)

Consequently forμ = O(mc) a useful formula is the follow-
ing one:

〈Q6(μ)〉0 = −0.50

[
114 MeV

ms(μ)+ md(μ)

]2

B(1/2)6 GeV3.

(41)

The final expressions for Z ′ contributions to A0 are

ReANP
0 = Re�sd

L (Z
′)K6(MZ ′)

[
1.4 × 10−8 GeV

]
, (42)

Im ANP
0 = Im�sd

L (Z
′)K6(MZ ′)

[
1.4 × 10−8 GeV

]
, (43)

where we have defined the μ-independent factor

K6(MZ ′) = −r6(μ)�
qq
R (Z

′)
[

3 TeV

MZ ′

]2

×
[

114 MeV

ms(μ)+ md(μ)

]2

B(1/2)6 (44)

with the renormalisation group factor r6(μ) defined by

C6(μ) = �sd
L (Z

′)�qq
R (Z

′)
4M2

Z ′
r6(μ). (45)

For μ = 1.3 GeV, as seen in (28), we find r6 = 1.13.
Demanding now that P% of the experimental value of

ReA0 in (1) comes from the Z ′ contribution, we arrive at the
condition:

Re�sd
L (Z

′)K6(Z
′) = 3.9

[
P%

20%

]
. (46)

Evidently the couplings Re�sd
L and �

qq
R (Z

′) must have
opposite signs and must satisfy

Re�sd
L (Z

′)�qq
R (Z

′)
[

3 TeV

MZ ′

]2

B(1/2)6 = −3.4

[
P%

20%

]
.

(47)

We also find

Im ANP
0 = Im�sd

L

Re�sd
L

[
P%

20 %

] [
5.4 × 10−8 GeV

]
, (48)

with implications for ε′/ε which we will discuss below.
From (47) we observe that for MZ ′ ≈ 3 TeV and B(1/2)6 =

1.0 ± 0.25 as expected from the large-N approach, the prod-
uct |Re�sd

L (Z
′)Re�qq

R (Z
′)| must be larger than unity unless

P is smaller than 7. The strongest bounds on Re�sd
L (Z

′)
come from �MK while the ones on Re�qq

R (Z
′) from the

LHC.
In what follows we will discuss first ε′/ε, subsequently

εK and �MK and finally in Sect. 5 the constraints from the
LHC.

3.4 The ratio ε′/ε

3.4.1 Preliminaries

The ratio ε′/ε measures the size of the direct CP violation in
KL → ππ relative to the indirect CP violation described by
εK . In the SM ε′ is governed by QCD penguins but receives
also an important destructively interfering contribution from
electroweak penguins that is generally much more sensitive
to NP than the QCD-penguin contribution. The interesting
feature of NP presented here is that the electroweak penguin
part of ε′/ε remains as in the SM and only the QCD-penguin
part gets modified.

The big challenge in making predictions for ε′/ε within
the SM and its extensions is the strong cancellation of QCD-
penguin contributions and electroweak penguin contribu-
tions to this ratio. In the SM QCD-penguins give positive
contribution, while the electroweak penguins negative one.
In order to obtain useful prediction for ε′/ε in the SM the cor-
responding hadronic parameters B(1/2)6 and B(3/2)8 have to be
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Table 1 The coefficients r (0)i , r (6)i and r (8)i of formula (55) in the NDR scheme for three values of αs(MZ )

i αs(MZ ) = 0.1179 αs(MZ ) = 0.1185 αs(MZ ) = 0.1191

r (0)i r (6)i r (8)i r (0)i r (6)i r (8)i r (0)i r (6)i r (8)i

0 –3.572 16.424 1.818 –3.580 16.801 1.782 –3.588 17.192 1.744

X0 0.575 0.029 0 0.572 0.030 0 0.569 0.031 0

Y0 0.405 0.119 0 0.401 0.121 0 0.398 0.123 0

Z0 0.709 –0.022 –12.447 0.724 –0.023 –12.631 0.739 –0.023 –12.822

E0 0.215 –1.898 0.546 0.211 –1.929 0.557 0.208 –1.961 0.568

known with the accuracy of at least 10 %. Recently signifi-
cant progress has been made by RBC-UKQCD collaboration
in the case of B(3/2)8 that is relevant for electroweak penguin

contribution [20] but the calculation of B(1/2)6 , which will
enter our analysis is even more important. There are some
hopes that also this parameter could be known from lattice
QCD with satisfactory precision in this decade [24,51].

On the other hand the calculations of short distance con-
tributions to this ratio (Wilson coefficients of QCD and elec-
troweak penguin operators) within the SM have been known
already for 20 years at the NLO level [42,43] and present
technology could extend them to the NNLO level if neces-
sary. First steps in this direction have been done in [44,45].
As we have seen above due to the NLO calculations in [47]
a complete NLO analysis of ε′/ε can also be performed in
the NP models considered here.

Selected analyses of ε′/ε in various extensions of the SM
and its correlation with εK , K + → π+νν̄ and KL → π0νν̄

can be found in [35–37,46]. Useful information can also be
found in [52–56].

3.4.2 ε′/ε in the standard model

In the SM all QCD-penguin and electroweak penguin opera-
tors in (11)–(14) contribute to ε′/ε. The NLO renormalisation
group analysis of these operators is rather involved [42,43]
but eventually one can derive an analytic formula for ε′/ε
[53] in terms of the basic one-loop functions

X0(xt ) = xt

8

[
xt + 2

xt − 1
+ 3xt − 6

(xt − 1)2
ln xt

]
, (49)

Y0(xt ) = xt

8

[
xt − 4

xt − 1
+ 3xt

(xt − 1)2
ln xt

]
, (50)

Z0(xt ) = −1

9
ln xt + 18x4

t − 163x3
t + 259x2

t − 108xt

144(xt − 1)3

+ 32x4
t − 38x3

t − 15x2
t + 18xt

72(xt − 1)4
ln xt (51)

E0(xt ) = −2

3
ln xt + x2

t (15 − 16xt + 4x2
t )

6(1 − xt )4
ln xt

+ xt (18 − 11xt − x2
t )

12(1 − xt )3
, (52)

where xt = m2
t /M2

W .
The updated version of this formula used in the present

paper is given as follows:
(
ε′

ε

)

SM
= a Imλt · Fε′(xt ) (53)

where a = 0.92 ± 0.03 represents the correction coming
from the �I = 5/2 transitions [57], which has not been
included in [53]. Next

Fε′(xt ) = P0 + PX X0(xt )+ PY Y0(xt )

+PZ Z0(xt )+ PE E0(xt ), (54)

with the first term dominated by QCD-penguin contributions,
the next three terms by electroweak penguin contributions
and the last term being totally negligible. The coefficients Pi

are given in terms of the non-perturbative parameters R6 and
R8 defined in (56) as follows:

Pi = r (0)i + r (6)i R6 + r (8)i R8. (55)

The coefficients r (0)i , r (6)i and r (8)i comprise information
on the Wilson-coefficient functions of the �S = 1 weak
effective Hamiltonian at the NLO. Their numerical values
extracted from [53] are given in the NDR renormalisation
scheme for μ = mc and three values of αs(MZ ) in Table 1.3

While other values of μ could be considered, the procedure
for finding the coefficients r (0)i , r (6)i and r (8)i is most straight-
forward at μ = mc.

The details on the procedure in question can be found in
[42,53]. In particular in obtaining the numerical values in
Table 1 the experimental value for ReA2 has been imposed
to determine hadronic matrix elements of subleading elec-
troweak penguin operators (Q9 and Q10). The matrix ele-
ments of (V − A) ⊗ (V − A) penguin operators have been
bounded by relating them to the matrix elements 〈Q1,2〉0

that govern the octet enhancement of ReA0. Moreover, as
ε′/ε involves ReA0 also this amplitude has been taken from
experiment. This procedure can also be used in Z ′ models as
here experimental value of ReA0 will constitute an important

3 We thank Matthias Jamin for providing this table for the most recent
values of αs(MZ ).
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constraint and the contributions of operators Q9 and Q10 are
unaffected by new Z ′ contributions up to tiny O(α) effects
from mixing with the operator Q6.

The dominant dependence on the hadronic matrix ele-
ments in ε′/ε resides in the QCD-penguin operator Q6 and
the electroweak penguin operator Q8. Indeed from Table 1
we find that the largest are the coefficients r (6)0 and r (8)Z rep-
resenting QCD-penguin and electroweak penguin contribu-
tions, respectively. The fact that these coefficients are of sim-
ilar size but having opposite signs has been a problem since
the end of 1980s when the electroweak penguin contribu-
tion increased in importance due to the large top-quark mass
[58,59].

The parameters R6 and R8 are directly related to the
parameters B(1/2)6 and B(3/2)8 representing the hadronic
matrix elements of Q6 and Q8, respectively. They are defined
as

R6 ≡ 1.13 B(1/2)6

[
114 MeV

ms(mc)+ md(mc)

]2

,

R8 ≡ 1.13 B(3/2)8

[
114 MeV

ms(mc)+ md(mc)

]2

,

(56)

where the factor 1.13 signals the decrease of the value of ms

since the analysis in [53] has been done.
There is no reliable result on B(1/2)6 from lattice QCD.

On the other hand one can extract the lattice value for B(3/2)8
from [21]. We find

B(3/2)8 (3 GeV) = 0.65 ± 0.05 (lattice). (57)

As B(3/2)8 depends very weakly on the renormalisation scale
[42], the same value can be used at μ = mc. In the absence
of the value for B(1/2)6 from lattice results, we will investi-

gate how the result on ε′/ε changes when B(1/2)6 is varied

within 25 % from its large N value B(1/2)6 = 1 [25]. Sim-

ilar to B(3/2)8 , the parameter B(1/2)6 exhibits a very weak μ
dependence [42].

3.4.3 Z ′ contribution to ε′/ε

We will next present Z ′ contributions to ε′/ε. A straight for-
ward calculation gives
(
ε′

ε

)

Z ′
= − Im ANP

0

ReA0

[
ω+

|εK |√2

]
(1 −
eff), (58)

where [57]

ω+ = a
ReA2

ReA0
= (4.1 ± 0.1)× 10−2,


eff = (6.0 ± 7.7)× 10−2.

(59)

In order to obtain the first number we set a = 0.92 ± 0.02
and as in the case of the SM we use the experimental values

for ReA0 and ReA2 in (1). Also the experimental values for
|εK | and ReA0 should be used in (58).

The final expression for ε′/ε is given by

(
ε′

ε

)

tot
=
(
ε′

ε

)

SM
+
(
ε′

ε

)

Z ′
(60)

3.4.4 Correlation between Z ′ contributions to ε′/ε and
ReA0

In our favourite scenarios only the couplings �sd
L (Z

′),
�

qq
R (Z

′) and the operator Q6 will be relevant in K → ππ

decays. In this case the expressions presented above allow
one to derive the relation

(
ε′

ε

)

Z ′
= −12.3

[
ReANP

0

ReA0

][
Im�sd

L (Z
′)

Re�sd
L (Z

′)

]

= −2.5

[
P%

20 %

][
Im�sd

L (Z
′)

Re�sd
L (Z

′)

]
,

(61)

which is free from the uncertainties in the CKM matrix and
〈Q6〉0. But the most important message that follows from
this relation is that
[

Im�sd
L (Z

′)
Re�sd

L (Z
′)

]
= O(10−4) (62)

if we want to obtain 20 % shift in ReA0 and simultaneously
be consistent with the data on ε′/ε. This also implies that Z ′
contributions to εK and KL → π0νν̄ which require complex
CP-violating phases will be easier to keep under control than
it is the case of�MK and K + → π+νν̄, which are CP con-
serving. In order to put these expectations on a firm footing
we now have to discuss εK , �MK and K → πνν̄.

4 Constraints from εK , �MK and K → πνν̄

4.1 εK and �MK

In the models in question we have

�MK = (�MK )SM +�MK (Z
′),

εK = (εK )SM + εK (Z
′)

(63)

and similar for G ′. A very detailed analysis of these observ-
ables in a general Z ′ model with �sd

L (Z
′) and �sd

R (Z
′) cou-

plings in LHS, RHS, LRS and ALRS scenarios has been
presented in [26]. We will not repeat the relevant formulae
for εK and�MK , which can be found there. Still it is useful
to recall the operators contributing in the general case. These
are
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QVLL
1 = (

s̄γμPL d
) (

s̄γ μPL d
)
,

QVRR
1 = (

s̄γμPRd
) (

s̄γ μPRd
)
, (64)

QLR
1 = (

s̄γμPL d
) (

s̄γ μPRd
)
,

QLR
2 = (s̄ PLd) (s̄ PRd) , (65)

where PR,L = (1 ± γ5)/2 and we suppressed the colour
indices as they are summed up in each factor. For instance
s̄γμPL d stands for s̄αγμPL dα and similarly for other factors.
In the SM only QVLL

1 is present. This operator basis applies
also to G ′ but the Wilson coefficients of these operators at
μ = MG ′ will be different as we will see in Sect. 6.

If only the Wilson coefficient of the operator QVLL
1 is

affected by Z ′ contributions, as is the case of the LHS sce-
nario, then the NP effects in εK and�MK can be summarised
by the modification of the one-loop function S:

S(K ) = S0(xt )+�S(K ) (66)

with the SM contribution represented by

S0(xt ) = 4xt − 11x2
t + x3

t

4(1 − xt )2
− 3x2

t log xt

2(1 − xt )3

= 2.31

[
mt (mt )

163 GeV

]1.52

(67)

and the one from Z ′ by

�S(K ) =
[
�sd

L (Z
′)

λt

]2
4r̃

M2
Z ′ g2

SM

,

g2
SM = 4

G F√
2

α

2π sin2 θW
= 1.781 × 10−7 GeV−2. (68)

Here r̃ is a QCD factor calculated in [28] at the NLO level.
One finds r̃ = 0.965, r̃ = 0.953 and r̃ = 0.925 for
MZ ′ = 2, 3, 10 TeV, respectively. Neglecting logarithmic
scale dependence of r̃ we find then

�S(K ) = 2.4

[
�sd

L (Z
′)

λt

]2 [
3 TeV

MZ ′

]2

. (69)

For�sd
L (Z

′)with a small phase, as in (62), one can still satisfy
the εK constraint, but if we want to explain 30 % of ReA0 the
bound from�MK is violated by several orders of magnitude.
Indeed allowing conservatively that the NP contribution is at
most as large as the short distance SM contribution to�MK

we find the bound on a real �sd
L (Z

′)

|�sd
L (Z

′)| ≤ 0.65|Vus |
√
ηcc

ηt t

mc

MW

[
MZ ′

3 TeV

]

= 0.004

[
MZ ′

3 TeV

]
. (70)

This bound, as seen in (46), does not allow any significant
contribution to occur to ReA0 unless the coupling �qq

R and

or B(1/2)6 are very large. We also note that the increase of
MZ ′ makes the situation even worse because the required
value of Re�sd

L (Z
′)by the condition (46) grows quadratically

with MZ ′ , whereas this mass enters only linearly in (70).
Evidently the LHS scenario does not provide any relevant
NP contribution to ReA0 when the constraint from �MK is
imposed. On the other hand in this scenario still interesting
results for ε′/ε, K + → π+νν̄ and KL → π0νν̄ can be
obtained.

In order to remove the incompatibility of ReA0 and�MK

constraints we have to suppress somehow Z ′ contribution
to �MK in the presence of a coupling �sd

L (Z
′) that is suffi-

ciently large so that the contribution of Z ′ to ReA0 is relevant.
To this end we introduce an effective [�sd

L (Z
′)]eff to be used

only in �S = 2 transitions and given by

[�sd
L (Z

′)]eff = �sd
L (Z

′)δ (71)

with �sd
L (Z

′) still denoting the coupling used for the eval-
uation of ReA0 and δ a suppression factor. We do not care
about the sign of�sd

L (Z
′), which can be adjusted by the sign

of�qq
R (Z

′). Imposing then the constraint (46) but demanding
that simultaneously (70) is satisfied with �sd

L (Z
′) replaced

by [�sd
L (Z

′)]eff we find that the required δ is given as follows:

δ =
[

r6(mc)

1.13

]
�

qq
R (Z

′),
[

3 TeV

MZ ′

]
B(1/2)6

[
20 %

P%

]
10−3.

(72)

Here we neglected the small uncertainty in the quark masses.
Evidently, increasing simultaneously �qq

R (Z
′) and B(1/2)6 to

above unity, decreasing MZ ′ to below 3 TeV and P to below
20 % can increase δ but then one has to check the other con-
straints, in particular from the LHC. We will study this issue
below.

Such a small δ can be generated in the presence of
flavour-violating right-handed couplings in addition to the
left-handed ones. In this case at NLO the values of the Wil-
son coefficients of �S = 2 operators at μ = MZ ′ generated
through Z ′ tree-level exchange are given in the NDR scheme
as follows [60]:

CVLL
1 (MZ ′) = (�sd

L (Z
′))2

2M2
Z ′

(
1 + 11

3

αs(MZ ′)

4π

)
, (73)

CVRR
1 (MZ ′) = (�sd

R (Z
′))2

2M2
Z ′

(
1 + 11

3

αs(MZ ′)

4π

)
, (74)

CLR
1 (MZ ′) = �sd

L (Z
′)�sd

R (Z
′)

M2
Z ′

(
1 − 1

6

αs(MZ ′)

4π

)
, (75)

CLR
2 (MZ ′) = −�

sd
L (Z

′)�sd
R (Z

′)
M2

Z ′

αs(MZ ′)

4π
. (76)
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The information about hadronic matrix elements of these
operators calculated by various lattice QCD collaborations
is given in the review [61].

Now, it is well known that similar to Q6 and Q′
6, the

LR operators have in the case of the K meson system chi-
rally enhanced matrix elements over those of VLL and VRR
operators; and as the LR operators have also large anomalous
dimensions, their contributions to εK and�MK dominate the
NP contributions in LRS and ALRS scenarios, while they are
absent in the LHS and RHS scenarios.

In order to see how the problem with �MK is solved in
this case we calculate �MK in a general case assuming for
simplicity that the couplings �L ,R(Z ′) are real. We find

�MK (Z
′) = (�sd

L (Z
′))2

M2
Z ′

〈Q̂VLL
1 (MZ ′)〉

×
⎡

⎣1 +
(
�sd

R (Z
′)

�sd
L (Z

′)

)2

+ 2

(
�sd

R (Z
′)

�sd
L (Z

′)

)
〈Q̂LR

1 (MZ ′)〉
〈Q̂VLL

1 (MZ ′)〉

⎤

⎦ ,

(77)

where using the technology in [60,62] we have expressed the
final result in terms of the renormalisation scheme indepen-
dent matrix elements,

〈Q̂VLL
1 (MZ ′)〉 = 〈QVLL

1 (MZ ′)〉
(

1 + 11

3

αs(MZ ′)

4π

)
(78)

〈Q̂LR
1 (MZ ′)〉 = 〈QLR

1 (MZ ′)〉
(

1 − 1

6

αs(MZ ′)

4π

)

−αs(MZ ′)

4π
〈QLR

2 (MZ ′)〉. (79)

Here 〈QVLL
1 (MZ ′)〉 and 〈QLR

1,2(MZ ′)〉 are the matrix elements
evaluated at μ = MZ ′ in the NDR scheme and the presence
of O(αs) corrections removes the scheme dependence.

But in the case of K 0 − K̄ 0 matrix elements for μ =
MZ ′ = 3 TeV

〈Q̂VLL(MZ ′)〉 > 0, 〈Q̂LR
1 (MZ ′)〉 < 0,

|〈Q̂LR
1 (MZ ′)〉| ≈ 97 |〈Q̂VLL(MZ ′)〉|. (80)

The signs are independent of the scale μ = MZ ′ but the
numerical factor in the last relation increases logarithmically
with this scale. Consequently in LR and ALR scenarios the
last term in (77) dominates so that the problem with�MK is
even worse. We conclude therefore that in LHS, RHS, LRS
and ALRS scenarios analysed in our previous papers [26–
33], the problem in question remains.

On the other hand we note that for a non-vanishing but
small �sd

R (Z
′) coupling

δ=
⎡

⎣1+
(
�sd

R (Z
′)

�sd
L (Z

′)

)2

+2

(
�sd

R (Z
′)

�sd
L (Z

′)

)
〈Q̂LR

1 (MZ ′)〉
〈Q̂VLL

1 (MZ ′)〉

⎤

⎦
1/2

,

(81)

can be made very small and Z ′ contribution to�MK and also
εK can be suppressed sufficiently and even totally eliminated.

In order to generate a non-vanishing �sd
R (Z

′) in the mass
eigenstate basis the exact flavour universality has to be vio-
lated generating a small contribution to ReA2 but in view of
the required size of �sd

R (Z
′) = O(10−3) this effect can be

neglected. Thus the presence of a small �sd
R (Z

′) coupling
has basically no impact on K → ππ decays and serves only
to avoid the problem with�MK which we found in the LHS
scenario. Even if this solution appears at first sight to be fine-
tuned, its existence is interesting. Therefore we will analyse
it numerically below for a Z ′ in a toy model for the coupling
�sd

R (Z
′) which satisfies (81) but allows for a non-vanishing

δ. The case of G ′ will be analysed in Sect. 6.

4.2 K + → π+νν̄ and KL → π0νν̄

A very detailed analysis of these decays in a general Z ′ model
with �sd

L (Z
′) and �sd

R (Z
′) couplings in various combina-

tions has been presented in [26] and we will use the formu-
lae of that paper. Still it is useful to recall the expression for
the shift caused by Z ′ tree-level exchanges in the relevant
function X (K ). One has now

X (K ) = X0(xt )+�X (K ) (82)

with X0(xt ) given in (49) and Z ′ contribution by

�X (K ) =
[
�ννL (Z

′)
g2

SM M2
Z ′

] [
�sd

L (Z
′)+�sd

R (Z
′)
]

λt
. (83)

We note that in addition to the �sd
L ,R(Z

′) couplings that
will be constrained by the �S = 2 observables as discussed
above, also the unknown coupling �ννL (Z

′) will be involved
and consequently it will not be possible to make definite
predictions for the branching ratios for these decays. How-
ever, it will be possible to learn something about the cor-
relation between them. Evidently in the presence of a large
�sd

L (Z
′) coupling the present bounds on K → πνν̄ branch-

ing ratios can be avoided by choosing sufficiently low value
of �νν̄L (Z

′). In the case of scenario B, in which we ignore
the�I = 1/2 rule issue and work only with left-handed Z ′-
couplings, �sd

L (Z
′) is forced to be small by εK and �MK

constraints so that �νν̄L (Z
′) can be chosen to be O(1).

4.3 A toy model

There is an interesting aspect of the possible contribution of a
Z ′ to the�I = 1/2 rule in the case in which the suppression
factor δ does not vanish. One can relate the physics respon-
sible for the missing piece in ReA0 to the one in ε′/ε, εK ,
�MK and rare decays K + → π+νν̄ and KL → π0νν̄ and
consequently obtain correlations between the related observ-
ables.
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In order to illustrate this we consider a model for the
�sd

R (Z
′) coupling:

�sd
R (Z

′)
�sd

L (Z
′)

= −1

2
RQ(1 + h R2

Q),

RQ ≡ 〈Q̂VLL
1 ((MZ ′)〉

〈Q̂LR
1 ((MZ ′)〉 ≈ −0.01

(84)

where h = O(1). This implies

δ = 1

2
RQ(1 − 4h)1/2 + O(R2

Q), (85)

which shows that by a proper choice of the parameter h one
can suppress the NP contributions to �MK to the level that
it agrees with experiment.

In this model we find

εK (Z
′) = − κεeiϕε

√
2(�MK )exp

(Re�sd
L )(Im�

sd
L )

M2
Z ′

×〈Q̂VLL
1 ((MZ ′)〉δ2 ≡ ε̃K (Z

′)eiϕε , (86)

�MK (Z
′) = (Re�sd

L )
2

M2
Z ′

〈Q̂VLL
1 ((MZ ′)〉δ2, (87)

where ϕε = (43.51 ± 0.05)◦ and κε = 0.94 ± 0.02 [63,64]
takes into account that ϕε 
= π

4 and includes long distance
effects in Im(�12) and Im(M12). The shift in the function
X (K ) is in view of (84) given by

�X (K ) =
[
�νν̄L (Z

′)
g2

SM M2
Z ′

] [
�sd

L (Z
′)
]

λt
. (88)

While the δ is at this stage not fixed, it will be required to
be non-vanishing in case SM predictions for εK and �MK

will disagree with data once the parametric and hadronic
uncertainties will be reduced. Moreover, independently of δ,
as long as it is non-vanishing these formulae together with
(61) imply correlations

ε̃K (Z
′) = − κε√

2r�M

[
Im�sd

L (Z
′)

Re�sd
L (Z

′)

]
,

r�M =
[
(�MK )exp

�MK (Z ′)

]
, (89)

(
ε′

ε

)

Z ′
= 3.5

κε
ε̃K (Z

′)
[

P%

20 %

]
r�M . (90)

Already without a detailed numerical analysis we note the
following general properties of this model:

• �MK (Z ′) is strictly positive.
• As P is also positive ε′/ε and εK are correlated with each

other. Therefore this scenario can only work if the SM
predictions for both observables are either below or above
the data.

• The ratio of the NP contributions to ε′/ε and εK depends
only on the product of P and r�M .

• For P = 20 ± 10, the NP contribution to ε′/ε is predicted
to be by an order of magnitude larger than in εK . This
tells us that in order for the Z ′ contribution to be relevant
for the �I = 1/2 rule and simultaneously be consistent
with the data on ε′/ε, its contribution to εK must be small
implying that the SM value for εK must be close to the
data.

The correlations in (89) and (90) together with the condi-
tion (47) allow one to test this NP scenario in a straightfor-
ward manner as follows.

Step 1

We will set r�M = 4, implying that Z ′ contributes 25 % of
the measured value of �MK . In view of a large uncertainty
in ηcc and consequently in (�MK )SM this value is plausible
and used here only to illustrate the general structure of what
is going on. In this manner (90) gives us the relation between
the NP contributions to εK and ε′/ε. Note that this relation
does not involve B(1/2)6 and only P . But the SM contribution

to ε′/ε involves explicitly B(1/2)6 . Therefore the correlation
of the resulting total ε′/ε and εK will depend on the values
of P and B(1/2)6 as well as CKM parameters. Note that to
obtain these results it was not necessary to specify the value of
�sd

L (Z
′). But already this step will tell us which combination

of P and B(1/2)6 are simultaneously consistent with data on
ε′/ε and εK .

Step 2

In order to find�sd
L (Z

′) and to test whether the results of Step
1 are consistent with the LHC data, we use condition (47). As
we will see below LHC implies an upper bound on�qq

R (Z
′)

as a function of MZ ′ . For fixed MZ ′ setting �qq
R (Z

′) at a
value consistent with this bound allows one to determine the
minimal value of Re�sd

L (Z
′) as a function of P and B(1/2)6 .

Combining finally these results in Sect. 5.2 with the bound
on Re�sd

L (Z
′) from the LHC we will finally be able to find

what are the maximal values of P consistent with all available
constraints and this will also restrict the values of B(1/2)6 .

Having Re�sd
L (Z

′) as a function of P , B(1/2)6 and
�

qq
R (Z

′), we can next use the relation (89) to calculate
Im�sd

L (Z
′) as a function of ε̃K (Z ′). We will then find that

only a certain range of the values of Im�sd
L (Z

′) is consistent
with the data on εK and ε′/ε and that this range depends on
P , B(1/2)6 and �qq

R (Z
′).

Step 3

With this information on the allowed values of the coupling
�sd

L (Z
′) we can find the correlation between the branching
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ratios for K + → π+νν̄ and KL → π0νν̄ and the correlation
between these two branching ratios and ε′/ε. To this end
�ννL (Z

′) has to be suitably chosen.

4.4 Scaling laws in the toy model

While the outcome of this procedure depends on the assumed
value of r�M , the relations (89) and (90) allow one to find
what happens for different values of r�M . To this end let us
note the following facts.

The correlation between the NP contributions to ε′/ε and
εK in (90) depends only on the product of P and r�M . But
one should remember that the full results for ε′/ε and εK

that include also the SM contributions depend on the sce-
nario (a)–( f ) for the CKM parameters considered in Sect. 5
and on B(1/2)6 , explicitly present in the SM contribution. In
a given CKM scenario there is specific room left for the NP
contribution to εK , which restricts the allowed range for ε̃K ,
which dependently on the scenario considered could be nega-
tive or positive. Thus dependently on P , B(1/2)6 and the CKM
scenario (a)–( f ), one can adjust r�M to satisfy simultane-
ously the data on ε′/ε and εK . But as r�M is predicted, in the
model considered, to be positive, and long distance contri-
butions, at least within the large N approach [17], although
small, are also predicted to be positive, r�M cannot be too
small.

Once the agreement on ε′/ε and εK is achieved it is crucial
to verify whether the selected values of P and B(1/2)6 are
consistent with the LHC bounds on the couplings Re�sd

L (Z
′)

and �qq
R (Z

′), which are related to P and B(1/2)6 through the
relation (47). The numerical factor −3.4 in this equation valid
for Z ′ is, as seen in (125), modified to −2.4 in the case of
G ′. Otherwise the correlations between ε′/ε, εK and r�M

given above are valid also for G ′, although the bounds on
Re�sd

L (G
′) and �qq

R (G
′) from the LHC differ from the Z ′

case, as we will see in Sect. 6.4.
In order to be prepared for the improvement of the LHC

bounds in question we define

[�qq
R (Z

′)]eff = �
qq
R (Z

′)
[

3 TeV

MZ ′

]2

. (91)

In the four panels in Fig. 1, corresponding to the four val-
ues of P indicated in each of them, we plot |[�qq

R (Z
′)]eff| as

a function of Re�sd
L (Z

′) for different values of B(1/2)6 . For
MG ′ = MZ ′ the corresponding plot for G ′ can be obtained
from Fig. 1 by either rescaling upwards all values of P
by a factor of 1.4 or scaling down either |[�qq

R (Z
′)]eff| or

Re�sd
L (Z

′) by the same factor. We will show such a plot in
Sect. 6.4.

As we will discuss in Sect. 5.2 the values in the grey area
corresponding to |[�qq

R (Z
′)]eff| ≥ 1.25 and |�sd

L (Z
′)| ≥ 2.3

are basically ruled out by the LHC.4 We also note that, while
for P = 5 and P = 10 and B(1/2)6 ≥ 1.0 the required values
of Re�sd

L (Z
′) are in the ballpark of unity, for P = 20 they

are generally larger than 2, implying for Re�sd
L (Z

′) = 2.3

αL = [Re�sd
L (Z

′)]2

4π
= 0.42. (92)

As αL is not small let us remark that in the case of a U (1)
gauge symmetry for even larger values of αL it is difficult to
avoid a Landau pole at higher scales. However, if only the
coupling �sd

L (Z
′) is large, a simple renormalisation group

analysis shows that these scales are much larger than the LHC
scales. Moreover, if Z ′ is associated with a non-abelian gauge
symmetry that is asymptotically free, Re�sd

L (Z
′) could be

even higher allowing one to reach values of P as high as
25–30. We will see in Sect. 6.4 that this is in fact the case for
G ′.

In this context a rough estimate of the perturbativity upper
bound on �sd

L (Z
′) can be made by considering the loop

expansion parameter5

L = N
[�sd

L (Z
′)]2

16π2 (93)

where N = 3 is the number of colours. For �sd
L (Z

′) =
2.5, 3.0, 3.5 one has L = 0.12, 0.17, 0.23, respectively,
implying that using �sd

L (Z
′) as large as 2.3 can certainly be

argued for.

4.5 Strategy

This discussion and an independent numerical analysis using
the general formulae presented above lead to the conclusion
that for the goals of the present paper it is sufficient to con-
sider only the following two scenarios for Z ′ couplings that
satisfy the hierarchy (7).

Scenario A

This scenario is represented by our toy model constructed
above. It provides a significant contribution to the�I = 1/2
rule without violating the constraints from the �F = 2 pro-
cesses. Here, in addition to �sd

L (Z
′) and �qq

R (Z
′) of O(1),

also a small �sd
R (Z

′) satisfying (84) is required. Undoubt-
edly this scenario is fine-tuned but cannot be excluded at
present. Moreover, it implies certain correlations between
various observables and it is interesting to investigate them

4 As mentioned in Sect. 5.2 the complete exclusion of the grey area
would require a more intensive study of points corresponding to larger
values of �R(Z ′) and MZ ′ < 3 TeV.
5 A.J.B. would like to thank Bogdan Dobrescu, Maikel de Vries and
Andreas Weiler for discussions on this issue.
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Fig. 1 Re�sd
L (Z

′) versus |[�qq
R (Z

′)]eff| for P = 5, 10, 15, 20 and B(1/2)6 = 0.75 (blue), 1.00 (red) and 1.25 (green). The grey area is basically
excluded by the LHC. See Sect. 5.2

numerically. The three step procedure outlined above allows
one to study transparently this scenario.

Scenario B

Among flavour-violating couplings only �sd
L (Z

′) is non-
vanishing or at all relevant. In this case only the SM operator
contributes to εK and �MK and we deal with scenario LHS
for flavour-violating couplings not allowing for the necessary
shift in ReA0 due to the �MK constraint but still providing
interesting results for ε′/ε. Indeed only the QCD-penguin
operator Q6 contributes as in scenario A to the NP part
in KL → ππ in an important manner. But ReANP

0 in this
scenario is very small and there is no relevant correlation
between the �I = 1/2 rule and the remaining observables.
The novel part of our analysis in this scenario relative to our
previous papers is the analysis of ε′/ε and of its correlation
with K + → π+νν̄ and KL → π0νν̄.

5 Numerical analysis

5.1 Preliminaries

In order to proceed we have to describe how we treat para-
metric and hadronic uncertainties in the SM contributions,

as this will determine the room left for NP contributions in
the observables discussed by us.

First in order to simplify the numerical analysis we will set
all parameters in Table 2, except for |Vub| and |Vcb|, at their
central values. Concerning the latter two we will investigate
six scenarios for them in order to stress the importance of
their determination in the context of the search for NP through
various observables. In order to bound the parameters of the
model and to take hadronic and parametric uncertainties into
account we will first only require that in scenario B the results
for �MK and εK including the NP contributions satisfy

0.75 ≤ �MK

(�MK )SM
≤ 1.25,

2.0 × 10−3 ≤ |εK | ≤ 2.5 × 10−3. (94)

However, it will be interesting to see what happens when the
allowed range for εK is reduced to the 3σ range around its
experimental value. In scenario A, which is easier to handle
numerically, we will see more explicitly what happens to
�MK and εK and the latter 3σ range will be more relevant
than the use of (94).

We will set MZ ′ = 3 TeV as our nominal value. This is
an appropriate value for being consistent with ATLAS and
CMS experiments although as we will discuss below such a
mass puts an upper bound on �qq

R (Z
′). The scaling laws in
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Table 2 Values of the experimental and theoretical quantities used as input parameters

G F = 1.16637(1)× 10−5 GeV−2 [1] MW = 80.385(15)GeV [1]
sin2 θW = 0.23116(13) [1] α(MZ ) = 1/127.9 [1]

αs(MZ ) = 0.1185(6) [1] mK = 497.614(24)MeV [65]

mu(2 GeV) = (2.1 ± 0.1)MeV [50] mπ = 135.0 MeV

md (2 GeV) = (4.68 ± 0.16)MeV [50] Fπ = 129.8 MeV

ms(2 GeV) = (93.8 ± 2.4)MeV [50] FK = 156.1(11)MeV [66]

mc(mc) = (1.279 ± 0.013)GeV [67] |Vus | = 0.2252(9) [68]

mb(mb) = 4.19+0.18
−0.06 GeV [1] |V incl.

ub | = (4.41 ± 0.31)× 10−3 [1]

mt (mt ) = 163(1)GeV [66,69] |V excl.
ub | = (3.23 ± 0.31)× 10−3 [1]

ηcc = 1.87(76) [70] |Vcb| = (40.9 ± 1.1)× 10−3 [1]

ηt t = 0.5765(65) [71] B̂K = 0.75

ηct = 0.496(47) [72] κε = 0.94(2) [63,64]

[33] and our discussion in Sect. 4.4 allow us to translate our
results to other values of MZ ′ . In particular when�sd

L (Z
′) is

bounded by �S = 2 observables, the NP effects in �F = 1
decrease with increasing MZ ′ . Therefore in order that NP
plays a role in the�I = 1/2 rule and the involved couplings
are in the perturbative regime, MZ ′ should be smaller than
5 TeV and consequently in the reach of the upgraded LHC.

Concerning the values of�sd
L (Z

′) the numerical analyses
in scenarios A and B differ in the following manner from
each other:

• In scenario A, in which ReA0 plays an important role, we
will use the three step procedure outlined in the previous
section. In this manner we will find that �sd

L (Z
′) ≥ 1 in

order for Z ′ to play any role in the �I = 1/2 rule.
• In scenario B, we can proceed as in our previous papers

by using the parametrisation

�sd
L (Z

′) = −s̃12e−iδ12 , (95)

and searching for the allowed oases in the space (s̃12, δ12)

that satisfy the constraints in (94) or the stronger 3σ con-
straint for εK . In this scenario�sd

L (Z
′) will turn out to be

very small. We will not show the results for these oases as
they can be found in [26].

Having determined �sd
L (Z

′) we can proceed to calculate
the �F = 1 observables and study the correlations between
them. Here additional uncertainties will come from B(1/2)6 ,
which is hidden in the condition (47) so that it does not appear
explicitly in the NP contributions but affects the SM contri-
bution to ε′/ε. Also the Z ′ coupling to the neutrinos has to
be fixed.

Finally the uncertainties due to the values of the CKM
elements |Vcb| and |Vub| have to be considered. These uncer-
tainties are at first sight absent in the Z ′ contributions but

affect the SM predictions for εK and ε′/ε and, consequently,
indirectly also the Z ′ contributions through the size of the
allowed range for�sd

L (Z
′) in both scenarios A and B. Indeed

ε′/ε and KL → π0νν̄ depend in the SM on Imλt , while εK

and K + → π+νν̄ depend on both Imλt and Reλt . Now
within the accuracy of better than 0.5 % we have

Imλt = |Vub||Vcb| sin γ, Reλt = −Imλt cot(β − βs)

(96)

with γ and β being the well-known angles of the unitarity
triangle and −βs ≈ 1◦ is the phase of Vts after the minus
sign has been factored out. Consequently, within the SM not
only ε′/ε and εK but also the branching ratios for K + →
π+νν̄ and KL → π0νν̄will depend sensitively on the chosen
values for |Vcb| and |Vub|.

One should recall that the typical values for |Vub| and
|Vcb| extracted from inclusive decays are (see [73,74] and
references therein)6

|Vub| = 4.1 × 10−3, |Vcb| = 42.0 × 10−3, (97)

while the typical values extracted from exclusive decays read
[75,76]

|Vub| = 3.2 × 10−3, |Vcb| = 39.0 × 10−3. (98)

As the determinations of |Vub| and |Vcb| are independent of
each other, it will be instructive to consider the following
scenarios for these elements:

6 We prefer to quote for the central value of |Vcb| the most recent value
from [74] rather than the one given in Table 2.
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(a) |Vub| = 3.2 × 10−3 |Vcb| = 39.0 × 10−3 (purple)
(99)

(b) |Vub| = 3.2 × 10−3 |Vcb| = 42.0 × 10−3 (cyan)
(100)

(c) |Vub| = 4.1 × 10−3 |Vcb| = 39.0 × 10−3 (magenta)
(101)

(d) |Vub| = 4.1 × 10−3 |Vcb| = 42.0 × 10−3 (yellow)
(102)

(e) |Vub| = 3.7 × 10−3 |Vcb| = 40.5 × 10−3 (green)
(103)

( f ) |Vub| = 3.9 × 10−3 |Vcb| = 42.0 × 10−3 (blue)
(104)

where we also included two additional scenarios, one for
averaged values of |Vub| and |Vcb| and the last one (( f ))
particularly suited for the analysis of scenario A. We also
give the colour coding for these scenarios used in the plots.

Concerning the parameter B̂K , which enters the evaluation
of εK , the world average from lattice QCD is B̂K = 0.766 ±
0.010 [50], very close to the strictly large N limit value B̂K =
0.75. On the other hand the recent calculation within the dual
approach to QCD gives B̂K = 0.73 ± 0.02 [17]. Moreover,
the analysis in [77] indicates that in the absence of significant
1/N 2 corrections to the leading large N value one should
have B̂K ≤ 0.75. It is an interesting question whether this
result will be confirmed by future lattice calculations which
have a better control over the uncertainties than is possible
within the approach in [17,77]. For the time being it is a
very good approximation to set simply B̂K = 0.75. Indeed
compared to the present uncertainties from |Vcb| and |Vub|
in εK proceeding in this manner is fully justified.

Concerning the value of γ we will just set γ = 68◦. This
is close to central values from recent determinations [78–80]
and varying γ simultaneously with |Vcb| and |Vub| would not
improve our analysis.

As seen in Table 3 the six scenarios for the CKM parame-
ters imply rather different values of Imλt and Reλt and conse-
quently different values for various observables considered
by us. This is seen in this table where we give SM values
for εK , �MK , �Ms , �Md , SψKS , ε′/ε, B(KL → π0νν̄)

and B(K + → π+νν̄) together with their experimental val-
ues. To this end we have used the central values of the
remaining parameters, relevant for the B0

s,d systems col-
lected in [61]. For completeness we give also the values for
B(Bs → μ+μ−) and B(Bd → μ+μ−).

We would like to warn the reader that the SM values for
various observables in Table 3 have been obtained directly
by using CKM parameters from tree-level decays and con-
sequently differ from SM results obtained usually from uni-
tarity triangle fits that include constraints from processes in
principle affected by NP.

We note that for a given choice of |Vub|, |Vcb| and γ the
SM predictions can differ sizably from the data but these
departures are different for different scenarios:

• Only in scenario (a) does SSM
ψKS

agree fully with the data.
On the other hand in the remaining scenarios Z ′ contribu-
tions to B0

d –B̄0
d are required to bring the theory to agree

with the data. But then also�Ms and�Md have to receive
new contributions, even in the case of scenario (a). As
in the models considered here Z ′ flavour-violating cou-
plings involving b-quarks are not fixed, this can certainly
be achieved. We refer to [26,32] for details.

• On the other hand εK is definitely below the experimental
value in scenario (a) but roughly consistent with exper-
iment in other scenarios leaving still some room for NP
contributions. In particular in scenarios (d) and ( f ) it is
close to its experimental value.

• �MK is as expected the same in all scenarios and roughly
10 % below its experimental value. But we should remem-
ber that the large uncertainty in ηcc corresponds to ±40 %
uncertainty in�MK and still sizable NP contributions are
allowed.

• The dependence of B(KL → π0νν̄) on scenario consid-
ered is large but moderate in the case of B(K + → π+νν̄).

• We emphasise the strong dependence on |Vcb| and conse-
quently on |Vts | of the branching ratios B(Bs → μ+μ−)
and B(Bd → μ+μ−). For exclusive values of |Vcb| both
branching ratios are significantly lower than the official
SM values [81] obtained using |Vcb| = 42.4 × 10−3.

In scenario B, where the constraint from �I = 1/2 is
absent we will have more freedom in adjusting the NP param-
eters to improve in each of the scenarios (a)–( f ) the agree-
ment of the theory with the data, but within scenario A we
will find that only for certain scenarios of the CKM param-
eters it will be possible to fit the data.

In Fig. 2 we summarise those results of Table 3 that
will help us in following our numerical analysis in various
NP scenarios presented by us. In particular, we observe in
the lower left panel a strong correlation between ε′/ε and
B(KL → π0νν̄). Figure 2 shows graphically how important
the determination of |Vub|, |Vcb| and B(1/2)6 in the indirect
search for NP is. Let us hope that at the end of this decade
there will be only a single point representing the SM in each
of these four panels.

5.2 LHC constraints

Finally, we should remember that Z ′ couplings to quarks
can be bounded by collider data as obtained from LEP-II
and the LHC. In the case of LEP-II all the bounds can be
satisfied in our models by using sufficiently small leptonic
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Table 3 Values of Imλt , Reλt and of several observables within the SM for various scenarios of CKM elements as discussed in the text

(a) (b) (c) (d) (e) ( f ) Data

Imλt [10−4] 1.16 1.25 1.48 1.60 1.39 1.52 −
Reλt [10−4] −2.90 −3.40 −2.76 −3.25 −3.07 −3.29 −
SSM
ψKS

0.664 0.622 0.808 0.765 0.726 0.736 0.679(20)

�Ms [ps−1] 15.92 18.44 15.99 18.51 17.19 18.49 17.69(8)

�Md [ps−1] 0.47 0.54 0.47 0.54 0.50 0.54 0.510(4)

�MK [10−3ps−1] 4.70 4.72 4.70 4.71 4.71 4.72 5.293(9)

|εK | [10−3] 1.56 1.89 1.93 2.35 1.96 2.25 2.228(11)

ε′/ε [10−4](B(1/2)6 = 0.75) 8.0 8.6 10.2 11.0 9.6 10.5 16.5 ± 2.6

ε′/ε [10−4](B(1/2)6 = 1.00) 12.9 13.9 16.5 17.8 15.5 16.9 16.5 ± 2.6

ε′/ε [10−4](B(1/2)6 = 1.25) 17.8 19.2 22.8 24.6 21.4 23.4 16.5 ± 2.6

B(KL → π0νν̄) [10−11] 2.01 2.33 3.29 3.82 2.89 3.45 ≤2.6 × 10−8

B(K + → π+νν̄) [10−11] 7.65 9.40 7.54 9.25 8.40 9.28 17.3+11.5
−10.5

B(Bs → μ+μ−) [10−9] 3.00 3.47 3.01 3.48 3.23 3.48 2.9 ± 0.7

B(Bd → μ+μ−) [10−10] 0.94 1.09 0.94 1.09 1.01 1.09 3.6+1.6
−1.4

Fig. 2 SM central values for ε′/ε, εK , B(KL → π0νν̄) and B(KL →
π0νν̄) for scenarios (a) (purple), (b) (cyan), (c) (magenta), (d) (yel-
low), (e) (green) and (f) (blue) and different values of B(1/2)6 =

0.75, 1.00, 1.25 corresponding to the increasing value of ε′/ε for fixed
colour. Grey region 2σ experimental range of ε′/ε and 3σ for εK

couplings. However, in the case of �qq
R and �sd

L we have to
check whether the values �qq

R (Z
′) = O(1) and �sd

L (Z
′) =

O(1) necessary for a significant Z ′ contribution to ReA0 are
allowed by the ATLAS and CMS outcome of the search for

narrow resonances using the dijet mass spectrum in proton–
proton collisions and by the effective operator bounds.

Bounds of this sort can be found in [40,87–90] but the Z ′
models considered there have SM couplings or as in the case
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Fig. 3 Exclusion limits for the Z ′ in the mass-coupling plane, from var-
ious searches at the LHC as found in [82]. The blue region is excluded
by effective operator limits studied by ATLAS [83] and CMS[84].
The dashed surface represents the region where the effective theory
is not applicable, and the bounds here should be interpreted as a rough
estimate. The red and green contours are excluded by dijet resonance
searches by ATLAS [85] and CMS [86]. See additional comments in
the text

of [40] all diagonal couplings, both left-handed and right-
handed, are flavour universal, which is not the case of our
models in which the hierarchy (7) is assumed.

For this reason a dedicated analysis of our toy model has
been performed [82]7 using the most recent results from
ATLAS and CMS. The result of this study is presented in
Fig. 3 and can be briefly summarised as follows:

• The most up to date dijet searches from ATLAS [85] and
CMS [86] allow one to put an upper bound on |�qq

R (Z
′)|

but only for |�qq
R (Z

′)| ≤ 0.8. As seen in Fig. 3 this max-
imal value is only allowed for MZ ′ ≥ 2.4 TeV.

• A second source of exclusion limits for Z ′ boson cou-
plings comes from the effective operator limits, in this
case from four-quark operators studied by both ATLAS
[83] and CMS [84]. As seen in Fig. 3 the upper bound on
|�qq

R (Z
′)| can be summarised by

|�qq
R (Z

′)| ≤ 1.0 ×
[

MZ ′

3 TeV

]
. (105)

The following additional comments should be made in
connection with the results in Fig. 3:

7 The details of this analysis will be presented elsewhere.

• The dijet limits are only effective if the width of the Z ′ or
G ′ is below 15 % for ATLAS and 10 % for CMS.

• The lack of exclusion limits for CMS around MZ ′ = 3.5
TeV are the result of a fluctuation in the data and therefore
their exclusion limits.

• It is important to note that the limits from effective operator
constraints should not to be trusted when the centre of
mass energy of the experiment is bigger than the mass of
the particle, which is integrated out. For this analysis the
effective centre of mass energy is 3 TeV.

While dijets constraints would still allow for [�qq
R (Z

′)]eff

= 1.25 (see (91)) we will use for it 1.0 so that our nominal
values will be

�
qq
R (Z

′) = −1.0, MZ ′ = 3 TeV, (106)

consistent with the bound in (105). As seen in (47) the cou-
plings �qq

R (Z
′) and �sd

L (Z
′) must have opposite signs in

order to satisfy the �I = 1/2 constraint. On the basis of
the present LHC data it is not possible to decide which of
the two possible sign choices for these couplings is favoured
by the collider data but this could be in principle possible in
the future. The minus in�qq

R (Z
′) is chosen here only to keep

the coupling�sd
L (Z

′) positive definite but presently the same
results would be obtained with the other choice for signs of
these two couplings.

As far as �sd
L (Z

′) is concerned the derivation of corre-
sponding bounds is more difficult, since the experimental
collaborations do not provide constraints for flavoured four-
quark interactions. However, there have been made efforts
to obtain these from the current data [88,91]. In particular
the analysis of the �S = 2 operator in [91] turns out to be
useful. With its help one finds the upper bound [82]

|�sd
L (Z

′)| ≤ 2.3

[
MZ ′

3 TeV

]
. (107)

Now, as seen in Fig. 1 with (106), the values P = 20–
30 require Re�sd

L (Z
′) ≈ 3–4 dependently on the value of

B(1/2)6 . This would still be consistent with rough perturba-
tivity bound Re�sd

L (Z
′) ≤ 4 discussed by us in Sect. 4.4.

However, the LHC bound in (107) seems to exclude this pos-
sibility, although a dedicated analysis of this bound includ-
ing simultaneously left-handed and right-handed couplings
would be required to put this bound on a firm footing. We
hope to return to such an analysis in the future. For the time
being we conclude that the maximal values of P possible in
this NP scenario are in the ballpark of 16, which is roughly
of the size of the SM QCD-penguin contribution.

Indeed, combining the bounds on the couplings of Z ′ and
its mass and using the relation (47) we arrive at the upper
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bound

P ≤ 16

[
B(1/2)6

1.0

]
, (Z ′). (108)

This result is also seen in Fig. 1. In principle for B(1/2)6 sig-
nificantly larger than unity one could increase the value of P
above 20, but as we will see soon this is not allowed when
simultaneously the correlation between ε′/ε and εK is taken
into account.

At this point it should be emphasised that the dashed sur-
face in Fig. 3 has in fact not been completely excluded by
ATLAS and CMS analyses and as an example �qq

R (Z
′) =

−1.5 and MZ ′ = 2.5 TeV, allowing P to be as high as 30, is
still a valid point. While it is likely that a dedicated analysis
of this model by ATLAS and CMS in this range of param-
eters would exclude the dashed surface completely, such an
analysis has still to be done.

5.3 Results

5.3.1 SM results for ε′/ε

We begin our presentation by discussing briefly the SM pre-
diction for ε′/ε given in Table 3 for different scenarios for
CKM couplings and three values of B(1/2)6 . We observe that

for B(1/2)6 = 1.00, except for scenario (a), the SM is in good
agreement with the data but in view of the experimental error
NP at the level of ±20 % can still contribute. In the past when
B(3/2)8 = 1.0 was used ε′/ε for B(1/2)6 = 1.0 was below the

data, but with the lattice result B(3/2)8 = 0.65 ± 0.05 [21] it

looks like B(1/2)6 ≈ 1.0 is the favourite value within the SM.

Except for scenario (a) and B(1/2)6 = 1.25, for which SM
gives values consistent with experiment, for the other two
values of B(1/2)6 we get either visibly lower or visibly higher

values of ε′/ε than measured and some NP is required to fit
the data.

5.4 Scenario A

The question then arises whether simultaneous agreement
with the data for ReA0, εK and ε′/ε can be obtained in the
toy Z ′ model introduced by us.

We use the three step procedure suited for this scenario
that we outlined in the previous section. Investigating all six
scenarios (a)–( f ) for (|Vcb|, |Vub|) we have found that only
in scenarios (d) and ( f ) it is possible to obtain satisfactory
agreement with the data on ε′/ε and εK for significant values
of P . Indeed due to relation (90) NP in εK must be small in
order to keep ε′/ε under control. As seen in Fig. 2 this is
only the case in these two CKM scenarios. Yet, as seen in
Fig. 4, even (d) and ( f ) scenarios can be distinguished by
the correlation between ε′/ε and εK demonstrating again
how important it is to determine precisely |Vcb| and |Vub|.

While, as seen in (90), the correlation between the NP
contributions to ε′/ε and εK depends at fixed r�M only on
P , in the case of SM contributions it depends explicitly on
B(1/2)6 . Therefore we show in Fig. 4 the lines for B(1/2)6 =
0.75, 1.00, 1.25 using the colour coding

B(1/2)6 = 0.75 (blue), B(1/2)6 = 1.0 (red),

B(1/2)6 = 1.25 (green).
(109)

The three lines carrying the same colour correspond to four
values of P = 5, 10, 15, 20. With increasing P the lines
become steeper. The dark (light) grey region corresponds to
the 1(2)σ experimental range for ε′/ε and 3σ range for εK .

Beginning with scenario (d) we observe that only the fol-
lowing combinations of P and B(1/2)6 are consistent with this
range:

Fig. 4 ε′/ε versus εK for scenario for scenario (d) and ( f ) for
r�M = 4. Light (dark) grey region: experimental 2σ (1σ ) range of ε′/ε
and 3σ range 2.195 × 10−3 ≤ |εK | ≤ 2.261 × 10−3. Blue, red and

green stands for B(1/2)6 = 0.75, 1.00, 1.25, respectively and for P we
use 5, 10, 15, 20 (the steeper the line, the larger P)
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Fig. 5 Here we show the allowed values of Re�sd
L and Im�sd

L in sce-
nario A (d) and ( f ) for �qq

R = −0.5 (blue), −1 (red), −1.5 (green)

and −2 (yellow). We varied P ∈ [5, 20] and B(1/2)6 ∈ [0.75, 1.25]

and took only those (B(1/2)6 , P) combinations that fulfill the con-
straints on ε′/ε (2σ ) and εK (darker colours 3σ and lighter colours
2.0 × 10−3 ≤ |εK | ≤ 2.5 × 10−3). The vertical black line indicates the
LHC bound in (107)

• For B(1/2)6 = 1.25 only P = 5, 10, 15 are allowed when
1σ range for ε′/ε is considered. At 2σ also P = 20 is
allowed. Larger values of P are only possible for B(1/2)6 >

1.25. We conclude therefore that for B(1/2)6 = 1.25 we find
the upper bound P ≤ 20.

• For B(1/2)6 = 1.00 the corresponding upper bound
amounts to P ≤ 10.

• For B(1/2)6 = 0.75 even for P = 5 one cannot obtain
simultaneous agreement with the data on ε′/ε and εK .

A rather different pattern is found for scenario ( f ):

• For B(1/2)6 = 1.25 the values P = 5, 10, 15, 20 are not
allowed even at 2σ range for ε′/ε but decreasing slightly
B(1/2)6 would allow values P ≥ 20.

• On the other hand, in the case of B(1/2)6 = 1.00 there is
basically no restriction on P from this correlation simply
because in this scenario the NP contributions to εK are
small (see Fig. 2). In fact in this case values of P as high
as 30 would be allowed. While such values are not possible
in the case of Z ′ due to LHC constraint in (108) we will
see that they are allowed in the case of G ′.

• Similar situation is found for B(1/2)6 = 0.75 although here
at 1σ for ε′/ε one finds the bound P ≥ 10.

We conclude therefore that in view of the fact that the
NP effects in ε′/ε in our toy model are by an order of mag-
nitude larger than in εK , scenario ( f ) is particularly suited
for allowing large values of P as it avoids strong constraints
from ε′/ε and εK . In scenario (d) independently of the LHC
we find P < 20. While in the case of Z ′ model at hand this
virtue of scenario ( f ) cannot be fully used because of the
LHC constraint (108) we will see in the next section that
it plays a role in the case of G ′ model. These findings are

interesting as they imply that only for the inclusive determi-
nations of |Vub| and |Vcb| Z ′ has a chance to contribute in a
significant manner to the �I = 1/2 rule. This assumes the
absence of other mechanisms at work which otherwise could
help in this case if the exclusive determinations of these CKM
parameters would turn out to be true.

In Fig. 5 we show with darker colours the allowed values
of Re�sd

L and Im�sd
L in scenario A for CKM values (d) and

( f ) that correspond to the values of P and B(1/2)6 selected
by the light grey region in Fig. 4. In lighter colours we show
the allowed values of Re�sd

L and Im�sd
L using (94) as con-

straint for εK . As for MZ ′ = 3 TeV only values |�qq
R | ≤ 1.0

are allowed by the LHC bound in (105), the green and yel-
low ranges are ruled out, but we show them anyway, as
this demonstrates the power of the LHC in constraining our
model. Among the remaining areas the red one is favoured
as it corresponds to smaller values of Re�sd

L for a given P
and this is the reason why �qq

R = −1.0 has been chosen as
nominal value for this coupling. This feature is not clearly
seen in this figure where we varied P but this is evident from
plots in Fig. 1. The vertical black line shows the LHC bound
in (107). Only values on the left of this line are allowed.

We have investigated the correlation between B(KL →
π0νν̄) and B(K + → π+νν̄) for scenarios (d) and ( f ) find-
ing the following pattern that follows from the fact that in sce-
nario A, as can be seen in Fig. 5, Re�sd

L (Z
′) = O(1). In view

of this, the neutrino coupling �ννL (Z
′) must be sufficiently

small in order to be consistent with the data on B(K + →
π+νν̄). But as seen in Fig. 5 Im�sd

L (Z
′) is required to be

small in order to satisfy the data on ε′/ε and εK . The small-
ness of both�ννL (Z

′) and Im�sd
L (Z

′) implies in this scenario
negligible NP contributions to B(KL → π0νν̄). Thus the
main message from this exercise is that B(KL → π0νν̄)

remains SM-like, while B(K + → π+νν̄) can be modified
but this modification depends on the size of the unknown
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coupling �ννL (Z
′) and changing its sign one can obtain both

suppression or enhancement of B(K + → π+νν̄) relative to
the SM value. For�ννL (Z

′) in the ballpark of 5×10−4 signif-
icant enhancements or suppressions can be obtained. In view
of this simple pattern and low predictive power we refrain
from showing any plots.

Yet, the requirement of strongly suppressed leptonic cou-
plings implies that unless �sb

L ,R(Z
′) and �db

L ,R(Z
′) are siz-

able, in scenario A NP contributions to rare Bs,d decays with
neutrinos and charged leptons in the final state are predicted
to be small. On the other hand these effects could be suffi-
ciently large in �B = 2 processes to cure SM problems in
scenarios d and f seen in Table 3.

While for a fixed value of�ννL (Z
′) there exist correlations

between ε′/ε and B(K + → π+νν̄) such correlations are
more interesting in the case of scenario B, which we will
discuss next.

5.5 Scenario B

Here we proceed as in [26] except that we use scenarios (a)–
( f ) for (|Vcb|, |Vub|) and also present results for ε′/ε. To this
end we use colour coding for these scenarios in (99)–(104)
and the one for B(1/2)6 in (109) and set

�
qq
R (Z

′) = 0.5, 1.0, �ννL (Z
′) = 0.5 (110)

with darker (lighter) colours representing�qq
R (Z

′)=1.0(0.5).
These values of �qq

R (Z
′) satisfy the LHC bounds. The neu-

trino coupling can be chosen as in our previous papers
because the coupling�sd

L (Z
′)will be bounded by�MK and

εK to be very small and this choice is useful as it allows one
to see the impact of the ε′/ε constraint on our results for the
rare decays K + → π+νν̄ and KL → π0νν̄ obtained in [26]
without this constraint.

We find that due to the absence of the constraint from
the �I = 1/2 rule in all six scenarios for (|Vcb|, |Vub|)
agreement with the data on εK and ε′/ε can be obtained. In
Fig. 6 we show the correlation between B(KL → π0νν̄)

and B(K + → π+νν̄) for the six scenarios (a)–( f ) for
(|Vcb|, |Vub|). In Figs. 7 and 8 we show correlations of ε′/ε
with B(KL → π0νν̄) and B(K + → π+νν̄), respectively.

We make the following observations:

• The plot in Fig. 6 is familiar from other NP scenarios.
B(KL → π0νν̄) can be strongly enhanced on one of the
branches and then B(K + → π+νν̄) is also enhanced. But
B(K + → π+νν̄) can also be enhanced without modifying
B(KL → π0νν̄). The last feature is not possible within
the SM and any model with minimal flavour violation in
which these two branching ratios are strongly correlated.

• As seen in Fig. 7, except for the smallest values of
B(KL → π0νν̄), where this branching ratio is below the

Fig. 6 B(KL → π0νν̄) versus B(K + → π+νν̄) for scenario (a)
(purple), (b) (cyan), (c) (magenta), (d) (yellow), (e) (green) and (f)
(blue). Grey region: experimental range of B(K + → π+νν̄). The black
line corresponds to the Grossman–Nir bound

SM predictions, in each scenario there is a strong correla-
tion between ε′/ε and this branching ratio so that for fixed
B(1/2)6 the increase of ε′/ε uniquely implies the increase
of B(KL → π0νν̄). In this case, as seen in Fig. 6, also
B(K + → π+νν̄) increases so that we have actually a
triple correlation.

• We note that even a small increase of ε′/ε for fixed values
of B(1/2)6 implies a strong increase of B(KL → π0νν̄).
But this hierarchy applies only for �qq

R (Z
′) and �ννL (Z

′)
being of the same order as assumed in (110). Introducing
a hierarchy in these couplings would change the effects in
favour of ε′/ε or B(KL → π0νν̄) relative to the results
presented by us. In the case of Z boson with FCNCs anal-
ysed in Sect. 7, where all diagonal couplings are fixed,
definite results for this correlation will be obtained.

• Values of B(1/2)6 = 1.25 are disfavoured for scenarios (c)–
( f ) unless B(KL → π0νν̄) is suppressed with respect to
the SM value.

• For B(1/2)6 = 1.0 the branching ratio B(KL → π0νν̄) can
reach values as high as 10−10 but in view of the experi-
mental error in ε′/ε this is not required by ε′/ε.

• For B(1/2)6 = 0.75 SM prediction for ε′/ε is in all scenarios
(a)–( f ) visibly below the data and curing this problem
with Z ′ exchange enhances B(KL → π0νν̄) typically
above 1.5 × 10−10.

• The main message from these plots is that values of
B(KL → π0νν̄) as large as several 10−10 are not pos-
sible when the ε′/ε constraint is taken into account unless
the coupling �qq

R (Z
′) is chosen to be much smaller than

assumed by us.
• The correlation between ε′/ε and B(K + → π+νν̄) is

more involved as here also real part of �sd
L (Z

′) plays
a role. In particular we observe that B(K + → π+νν̄)
can increase without affecting ε′/ε at all. But then it is
bounded from above by KL → μ+μ−, although this
bound depends on the value of the Z ′ axial-vector cou-
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Fig. 7 ε′/ε versus B(KL → π0νν̄) for scenario (a)–( f ) and different values of B(1/2)6 = 0.75 (blue), B(1/2)6 = 1.00 (red), B(1/2)6 = 1.25 (green)
and �qq

R (Z
′) = 1.0(0.5) for darker (lighter) colours. Grey region 2σ experimental range of ε′/ε

pling to muons, which is not specified here. If this cou-
pling equals�ννL (Z

′) then as seen in Fig. 10 in [26] values
of B(K + → π+νν̄) above 15 × 10−11 are excluded.

We emphasise that the correlation between ε′/ε and the
branching ratio B(KL → π0νν̄) shown in Figs. 7 and 8
differs markedly from many other NP scenarios, in particular
LHT [46] and SM with four generations [92], where ε′/ε
was modified by electroweak penguin contributions. There,
the increase of B(KL → π0νν̄) implied the decrease of ε′/ε
and only the values of B(1/2)6 significantly larger than unity
allowed large enhancements of B(KL → π0νν̄). However,

the correlations in Figs. 7 and 8 are valid for the assumed
�

qq
R (Z

′). For the opposite sign of �qq
R (Z

′) the values of
ε′/ε are flipped along the horizontal “central” line without
the change in the branching ratios which do not depend on
this coupling. Similarly, flipping the sign of �ννL (Z

′) would
change the correlation between ε′/ε and B(KL → π0νν̄)

into anticorrelation.

5.6 The primed scenarios and the �I = 1/2 rule

Clearly the solution for the missing piece in ReA0 can also
be obtained by choosing �sd

R (Z
′) and �qq

L (Z
′) to be O(1)

instead of�sd
L (Z

′) and�qq
R (Z

′), respectively. Interchanging
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Fig. 8 ε′/ε versus B(K + → π+νν̄) for scenario (a)–( f ) and different values of B(1/2)6 = 0.75 (blue), B(1/2)6 = 1.00 (red), B(1/2)6 = 1.25 (green)
and �qq

R (Z
′) = 1.0(0.5) for darker (lighter) colours. Grey region 2σ experimental range of ε′/ε

L and R in the hierarchies (7) would then lead from the point
of view of low energy flavour-violating processes to the same
conclusions, which can be understood as follows.

In this primed scenario the operator Q′
6 replaces Q6 and as

the matrix element 〈Q′
6〉0 differs by the sign from 〈Q6〉0, the

�I = 1/2 rule requires the product�sd
R (Z

′)×�qq
L (Z

′) to be
positive. Choosing then positive �qq

L (Z
′) instead of a nega-

tive �qq
R (Z

′) in scenario A our results for ε′/ε and ReA0

remain unchanged as also the �S = 2 analysis remains
unchanged. Similarly our analysis of K + → π+νν̄ and
KL → π0νν̄ is not modified as these decays are insensi-
tive to γ5. The only change takes place in KL → μ+μ−

where for a fixed muon coupling the NP contribution has
an opposite sign to the scenarios considered by us. But this
change can be compensated by a flip of the sign of the muon
coupling, which without a concrete model is not fixed.

On the other hand the difference between primed and
unprimed scenarios could possibly be present in other pro-
cesses, like the ones studied at the LHC, in which the con-
straints on the couplings could depend on whether the bounds
on a negative product�sd

L (Z
′)×�qq

R (Z
′) or a positive prod-

uct�sd
R (Z

′)×�qq
L (Z

′) are more favourable for the�I = 1/2
rule. However, presently, as discussed above, only separate
bounds on the couplings involved and not their products are

123



Eur. Phys. J. C (2014) 74:2950 Page 25 of 40 2950

available. Whether the future bounds on these products will
improve the situation of the �I = 1/2 rule remains to be
seen.

6 Coloured neutral gauge bosons G′

6.1 Modified initial conditions

In various NP scenarios neutral gauge bosons with colour
(G ′) are present. One of the prominent examples of this type
is that with Kaluza–Klein gluons in the Randal–Sundrum sce-
narios that belong to the adjoint representation of the colour
SU (3)c. In what follows we will assume that these gauge
bosons carry a common mass MG ′ and being in the octet rep-
resentation of SU (3)c couple to fermions in the same manner
as gluons do. However, we will allow for different values of
their left-handed and right-handed couplings. Therefore up
to the colour matrix ta , the couplings to quarks will be again
parametrised by

�sd
L (G

′), �sd
R (G

′), �
qq
L (G

′), �
qq
R (G

′) (111)

and the hierarchy in (7) will be imposed.
Calculating then the tree-diagrams with G ′ gauge boson

exchanges and expressing the result in terms of the operators
encountered in the previous sections we find that the initial
conditions at μ = MG ′ are modified.

The new initial conditions for the operators entering K →
ππ now read at LO

C3(MG ′) =
[
−1

6

]
�sd

L (G
′)�qq

L (G
′)

4M2
G ′

,

C ′
3(MG ′) =

[
−1

6

]
�sd

R (G
′)�qq

R (G
′)

4M2
G ′

,

(112)

C4(MG ′) =
[

1

2

]
�sd

L (G
′)�qq

L (G
′)

4M2
G ′

,

C ′
4(MG ′) =

[
1

2

]
�sd

R (G
′)�qq

R (G
′)

4M2
G ′

,

(113)

C5(MG ′) =
[
−1

6

]
�sd

L (G
′)�qq

R (G
′)

4M2
G ′

,

C ′
5(MG ′) =

[
−1

6

]
�sd

R (G
′)�qq

L (G
′)

4M2
G ′

,

(114)

C6(MG ′) =
[

1

2

]
�sd

L (G
′)�qq

R (G
′)

4M2
G ′

,

C ′
6(MG ′) =

[
1

2

]
�sd

R (G
′)�qq

L (G
′)

4M2
G ′

.

(115)

Again due to the hierarchy in (7) the contributions of
primed operators can be neglected. Moreover, due the non-
vanishing value of C6(MG ′) the dominance of the operator
Q6 is this time even more pronounced than in the case of a
colourless Z ′. Indeed we find now

[
C5(mc)

C6(mc)

]
=
[

0.86 0.19
1.13 3.60

] [−1/6
1/2

]

×�
sd
L (G

′)�qq
R (G

′)
4M2

G ′
. (116)

Consequently

C5(mc) = −0.05
�sd

L (G
′)�qq

R (G
′)

4M2
G ′

C6(mc) = 1.61
�sd

L (G
′)�qq

R (G
′)

4M2
G ′

.

(117)

Also the initial conditions for �S = 2 transition change:

CVLL
1 (MG ′) =

[
1

3

]
(�sd

L (G
′)2

2M2
G ′

,

CVRR
1 (MG ′) =

[
1

3

]
(�sd

R (G
′))2

2M2
G ′

, (118)

CLR
1 (MG ′) =

[
−1

6

]
�sd

L (G
′)�sd

R (G
′)

M2
G ′

,

CLR
2 (MG ′) = [−1]

�sd
L (G

′)�sd
R (G

′)
M2

G ′
. (119)

The NLO QCD corrections to tree-level coloured gauge
boson exchanges at μ = MG ′ to �S = 2 are not known.
They are expected to be small due to small QCD coupling at
this high scale and serve mainly to remove certain renormali-
sation scheme and matching scale uncertainties. More impor-
tant is the RG evolution from low energy scales to μ = MG ′
necessary to evaluate 〈QVLL

1 (MG ′)〉 and 〈QLR
1,2(MG ′)〉. Here

we include NLO QCD corrections using the technology in
[62]. Again QVLL

1 remains the only operator in scenario B
while QLR

1,2 contributing in scenario A help in solving the
problem with �MK .

6.2 ReA0 and Im A0

Proceeding as in the case of a colourless Z ′ we find

ReANP
0 = Re�sd

L (G
′)K c

6(MG ′)
[
0.7 × 10−8 GeV

]
, (120)

Im ANP
0 = Im�sd

L (G
′)K c

6(MG ′)
[
0.7 × 10−8 GeV

]
, (121)
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where we have defined the μ-independent factor

K6(MG ′) = −rc
6(μ)�

qq
R (G

′)
[

3 TeV

MG ′

]2

×
[

114 MeV

ms(μ)+ md(μ)

]2

B(1/2)6 (122)

with the renormalisation group factor rc
6(μ) defined by

C6(μ) =
[

1

2

]
�sd

L (G
′)�qq

R (G
′)

4M2
G ′

rc
6(μ). (123)

Even if formulae (120) and (121) involve an explicit factor
of 0.7 instead of 1.4 in the case of the colourless case, this
decrease is overcompensated by the value of rc

6 , which for
μ = 1.3 GeV is found to be rc

6 = 3.23, that is, by roughly a
factor of 3 larger than r6 in the colourless case.

Demanding now that P% of the experimental value of
ReA0 in (1) comes from the G ′ contribution, we arrive at the
condition:

Re�sd
L (G

′)K c
6(MG ′) = 7.8

[
P%

20 %

]
. (124)

Consequently the couplings Re�sd
L (G

′) and �qq
R (G

′)) must
have opposite signs and must satisfy

Re�sd
L (G

′)�qq
R (G

′)
[

3 TeV

MZ ′

]2

B(1/2)6 = −2.4

[
P%

20 %

]
.

(125)

In view of the fact that rc
6 is larger than r6 by a factor

of 2.9, Re�sd
L can be by a factor of 1.4 smaller than in the

colourless case in order to reproduce the data on ReA0.
We also find

Im ANP
0 = Im�sd

L

Re�sd
L

[
P%

20 %

] [
5.4 × 10−8 GeV

]
. (126)

6.3 �MK constraint

Beginning with LHS scenario B we find that due to the mod-
ified initial conditions �S(K ) is by the colour factor 1/3
suppressed relative to the colourless case

�S(K ) = 0.8

[
�sd

L (G
′)

λt

]2 [
3 TeV

MG ′

]2

. (127)

Consequently allowing conservatively that the NP contribu-
tion is at most as large as the short distance SM contribution
to �MK we find the bound on a real �sd

L (G
′)

|�sd
L (G

′)| ≤ 0.007

[
MG ′

3 TeV

]
. (128)

This softer bound is still in conflict with (124) and we con-
clude that also in this case the LHS scenario does not provide
a significant NP contribution to ReA0 when�MK constraint

is taken into account. On the other hand in this scenario there
are no NP contributions to K + → π+νν̄ and KL → π0νν̄

because of the vanishing G ′νν̄ coupling. This fact offers of
course an important test of this scenario.

In scenario A for the couplings, assuming first for sim-
plicity that the couplings �sd

L ,R(G
′) are real, we find

�MK (G
′) = (�sd

L (G
′))2

3M2
G ′

〈QVLL
1 (MG ′)〉

×
⎡

⎣1 +
(
�sd

R (G
′)

�sd
L (G

′)

)2

+ 6

(
�sd

R (G
′)

�sd
L (G

′)

)
〈QLR(MG ′)〉c

〈QVLL
1 (MG ′)〉

⎤

⎦ ,

(129)

with 〈QVLL
1 (MG ′)〉 as before but

〈QLR(MG ′)〉c ≡ −1

6
〈QLR

1 (MG ′)〉
−〈QLR

2 (MG ′)〉 ≈ −143 〈QVLL
1 (MG ′)〉. (130)

We indicate with the subscript ”c” that the initial conditions
for the Wilson coefficients are modified relative to the case of
a colourless Z ′. Hadronic matrix elements remain of course
unchanged except that in view of the absence of NLO QCD
corrections at the high matching scale no hats are present.

Denoting then the analogue of the suppression factor δ by
δc we find that the required suppression of�MK is given by

δc = 0.002

[
rc

6(mc)

3.23

]
�

qq
R (G

′)
[

3 TeV

MG ′

]
B(1/2)6

[
20 %

P%

]

(131)

and in our toy model is given by

δc =
⎡

⎣1 +
(
�sd

R (G
′)

�sd
L (G

′)

)2

+ 6

(
�sd

R (G
′)

�sd
L (G

′)

)
〈QLR(MG ′)〉c

〈QVLL
1 (MG ′)〉

]1/2

. (132)

Consequently also in this case the problem with �MK can
be solved by suitably adjusting the coupling �sd

R (G
′).

The expression for �sd
R (G

′) in our toy model now reads

�sd
R (G

′)
�sd

L (G
′)

= −1

6
Rc

Q(1 + h(Rc
Q)

2),

Rc
Q ≡ 〈QVLL

1 ((MG ′)〉
〈QLR

1 ((MG ′)〉c
≈ −0.7 × 10−2

(133)

and consequently

δc = 1

6
Rc

Q(1 − 36h)1/2 + O((Rc
Q)

2), (134)
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which shows that by a proper choice of the parameter h one
can suppress the NP contributions to �MK to the level that
it agrees with experiment.

We find then

εK (G
′) = − κεeiϕε

√
2(�MK )exp

(Re�sd
L (G

′))(Im�sd
L (G

′))
3 M2

G ′

×〈QVLL
1 (MG ′)〉δ2

c ≡ ε̃K (G
′)eiϕε , (135)

�MK (G
′) = (Re�sd

L (G
′))2

3 M2
G ′

〈QVLL
1 (MG ′)〉δ2

c . (136)

Consequently we find the correlations

ε̃K (G
′) = − κε√

2r�M

[
Im�sd

L (G
′)

Re�sd
L (G

′)

]
,

r�M =
[
(�MK )exp

�MK (G ′)

]
, (137)

(
ε′

ε

)

G ′
= 3.5

κε
ε̃K (G

′)
[

P%

20 %

]
r�M . (138)

We note that these correlations are exactly the same as in
the colourless case and we can use the three step procedure
used in the latter case. But there are the following differences,
which will change the numerical analysis:

• The relation (125) differs from the one in (47) so that a
smaller value of the product |Re�sd

L (G
′)�qq

R (G
′)| than of

|Re�sd
L (Z

′)�qq
R (Z

′)| is required to obtain a given value
of P .

• But the LHC constraints on �qq
R (G

′), �sd
L (G

′) and MG ′
differ from the ones on �qq

R (Z
′), �sd

L (Z
′) and MZ ′ and

therefore in order to find whether G ′ or Z ′ contributes more
to ReA0 these constraints have to be taken into account.
See below.

• The NP contributions to K + → π+νν̄ and KL → π0νν̄

vanish.

6.4 Numerical results

6.4.1 Scenario A

In the case of scenario A, we just follow the steps performed
for Z ′ but, as the correlation between ε′/ε and εK is the
same, we just indicate for which values of B(1/2)6 and P this
correlation is consistent with the data on ε′/ε and εK and the
LHC constraints on the relevant couplings.

Concerning the LHC constraints a dedicated analysis of
our toy G ′ model has been performed in [82] with the results
given in Fig. 9. Additional comments made in connection
with the bounds on Z ′ couplings in Fig. 3 also apply here.
In particular the complete exclusion of the dashed surface

Fig. 9 Exclusion limits for the G ′ in the mass-coupling plane, from
various searches at the LHC as found in [82]. The blue region is excluded
by effective operator bounds provided by ATLAS [83] and CMS[84].
The dashed surface represents the region where the effective theory is
not applicable, and the bounds here should be interpreted as a rough
estimate. The red and green contours are excluded by dijet resonance
searches by ATLAS [85] and CMS [86]. See for additional comments
in the text

would require a new ATLAS and CMS study in the context
of our simple model.

These results can be summarised as follows:

• From dijets constraints the upper bounds can only be
obtained for |�qq

R (G
′)| ≤ 1.9 and at this value only

MZ ′ ≥ 3.3 TeV is allowed.
• The effective operator bounds can be summarised by

|�qq
R (G

′)| ≤ 2.0 ×
[

MZ ′

3.5 TeV

]
. (139)

We note that the bound in this case is weaker than in the
case of Z ′, which is partly the result of colour factors that
suppress the NP contributions.

• We are not aware of any LHC bound on the �S = 2
operator in this case but we expect on the basis of the
last finding that this bound is also weaker than the one on
�sd

L (Z
′) in (107). However, in the absence of any dedicated

analysis we assume that the bound on�sd
L (G

′) is as strong
as the latter bound. A simple rescaling then gives

|�sd
L (G

′)| ≤ 2.6

[
MZ ′

3.5 TeV

]
. (140)
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Even if a dedicated analysis of the latter bound would
be necessary to put our analysis of LHC constraints on firm
footing we conclude for the time being that G ′ copes much
better with the missing piece in ReA0 than Z ′ and conse-
quently can provide a significantly larger contribution than
the SM QCD-penguin contribution. This is not only the result
of the weaker LHC bound on�qq

R but also of different renor-
malisation group effects, as seen in (125).

Putting all the factors together we conclude that P as high
as 30–35 is still possible at present and this is sufficient to
reproduce the �I = 1/2 rule within 5–10 %. Indeed taking
all these bounds into account and using (125) we arrive at the
bound

P ≤ 32

[
B(1/2)6

1.0

]
, (G ′) . (141)

In Fig. 10 we show the results for G ′ corresponding to
Fig. 1. As now the values of P can be larger we show the
results for P = 15, 20, 25, 30. With the definition

[�qq
R (G

′)]eff = �
qq
R (G

′)
[

3.5 TeV

MZ ′

]2

(142)

the values in the grey area correspond to |[�qq
R (G

′)]eff| ≥
2.00 and Re�sd

L (G
′) ≥ 2.6. Even if these values are already

ruled out by the LHC it is evident that G ′ can provide signif-
icantly larger values of P than Z ′. We do not show the plot
corresponding to Fig. 4, as this correlation is also valid in
the case of G ′, except that now also larger values of P , like
25–30, are allowed, which correspond to steeper lines than
P = 20 in Fig. 4.

6.4.2 Scenario B

In the case of scenario B in the absence of the �I = 1/2
constraint and NP contributions to K + → π+νν̄ and KL →
π0νν̄ we can only illustrate how going from the Z ′ to the G ′
scenario modifies the allowed oases for �sd

L when the ε′/ε,
εK and �MK constraints are imposed. To this end we set8

�
qq
R (G

′) = �
qq
R (Z

′) = 0.5, MG ′ = MZ ′ = 3.0 TeV

(143)

and use in the G ′ case the formula (58) with Im ANP
0 given in

(121). For the corresponding contributions to εK and �MK

we use the shift in the function S given this time in (127).
In order to understand better the results below it should

be noted that for the same values of the couplings �qq
R and

�sd
L the contribution of G ′ to ε′/ε is by a factor of 1.4 larger

than the Z ′ contribution. In the case of �MK and εK it is

8 The case of �qq
R (G

′) = 1.0 and MG′ = 3.0 TeV is ruled out by dijet
data from CMS and direct comparison with Z ′ for these parameters is
not possible.

opposite: G ′ contribution is by a factor of 3 smaller than in
the Z ′ case.

In Fig. 11 we compare the oases obtained in this manner
for G ′ with those obtained for Z ′ for B(1/2)6 = 1.00 and the
scenarios ( f ) and (a) for (|Vcb|, |Vub|). To this end we have
used the 2σ constraint for ε′/εwith (143) shown in green. For
εK we impose either softer constraint (lighter blue region) in
(94) or a tighter 3σ experimental range (darker blue).

We observe the following features:

• In all plots the 3σ constraint from εK (dark blue) deter-
mines the allowed oasis simply because the present exper-
imental error on ε′/ε is unfortunately significant.

• The bound on �sd
L from εK is stronger in the case of Z ′.

On the other hand the corresponding bound from ε′/ε is
stronger in the case of G ′. Both properties follow from
the different numerical factors in ε′/ε and εK summarised
above.

• In scenario ( f ), the coupling�sd
L can vanish as SM value

for εK is very close to the data. This is not the case in
scenario (a), in which the SM value is well below the data
and NP is required to enhance εK .

• In spite of the weak constraint from ε′/ε, also ε′/ε in sce-
nario (a) has to be enhanced. This helps us to distinguish
between two oases that follow from εK favouring the one
with smaller δ12, in which ε′/ε is enhanced over its SM
value. But the large experimental error on ε′/ε does not
allow one to exclude the second oasis in which ε′/ε is
suppressed unless 1σ constraint on ε′/ε is used.

In presenting these results we have set B(1/2)6 = 1.0.
Choosing different values would change the role of ε′/ε but
we do not show these results as it is straightforward to deduce
the pattern of NP effects for these different values of B(1/2)6 .
Similar comment applies to other CKM scenarios.

7 The case of Z boson with FCNCs

7.1 Preliminaries

We will next discuss the scenario of Z with FCNC couplings
in order to demonstrate that the missing piece in ReA0 cannot
come from this corner, as this would imply total destruction
of the SM agreement with the data on ReA2. Still interesting
results for ε′/ε and its correlation with the branching ratios
for K + → π+νν̄ and KL → π0νν̄ can be found. They are
more specific than in the Z ′ case due to the knowledge of all
flavour diagonal couplings of Z and of its mass.

Indeed the only freedom in the kaon system in this NP
scenario are the complex couplings �sd

L ,R(Z). Its detailed
phenomenology including�S = 2 transitions and rare kaon
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Fig. 10 Re�sd
L (G

′) versus |[�qq
R (G

′)]eff| for P = 15, 20, 25, 30 and B(1/2)6 = 0.75 (blue), 1.00 (red) and 1.25 (green). The grey area is basically
excluded by the LHC. See additional comments in the text

decays has been presented by us in [26]. This section gener-
alises that analysis to K → ππ decays; in particular, the ε′/ε
constraint will eliminate some portions of the large enhance-
ments found by us for the branching ratios of rare K decays.

In order to understand better our results for K + → π+νν̄
and KL → π0νν̄ in the presence of simultaneous constraints
from ε′/ε and KL → μ+μ− in addition to the�S = 2 con-
straints let us recall that ε′/ε puts constraints only on imagi-
nary parts of the NP contributions, while KL → μ+μ− only
puts constraints on the real ones. As demonstrated already
in [26] the impact of the latter constraint on K + → π+νν̄
and KL → π0νν̄ depends strongly on the scenario for the Z
flavour-violating couplings: LHS, RHS, LRS, ALRS and to
a lesser extent on the CKM scenarios considered. Moreover,
it has a different impact on K + → π+νν̄ and KL → π0νν̄,
as the latter decay is only sensitive to the imaginary parts in
the NP contributions. Let us summarise briefly these findings
adding right away brief comments on ε′/ε:

• In the LHS scenario the branching ratio for KL → μ+μ−
is strongly enhanced relatively to its SM value and this
limits possible enhancement of B(K + → π+νν̄). But
K + → π+νν̄ receives also an NP contribution from imag-
inary parts so that its branching ratio is strongly correlated

with the one for KL → π0νν̄ on the branch on which both
branchings can be significantly modified. As we will see
below the imposition of the ε′/ε constraint will eliminate
some parts of these modifications but this will depend on
B(1/2)6 and on the scenarios for the CKM parameters con-
sidered.

• In the RHS scenario the KL → μ+μ− constraint has
a different impact on K + → π+νν̄. Indeed, as KL →
μ+μ− is sensitive to axial-vector couplings there is a
sign flip in the NP contributions to the relevant decay
amplitude, while there is no sign flip in the case of
K + → π+νν̄. Consequently the impact of KL → μ+μ−
on K + → π+νν̄ is now much weaker on the branch
where there is no NP contribution to KL → π0νν̄, but
on the branch where K + → π+νν̄ and KL → π0νν̄

are strongly correlated we will find the impact of the ε′/ε
constraint.

• In the LRS scenario there are no NP contributions to
KL → μ+μ− so that, as already found in Fig. 30
of [26], very large NP effects in K + → π+νν̄ and
KL → π0νν̄ without ε′/ε constraint can be found. ε′/ε
will again constrain both decays on the branch where these
decays are strongly correlated but leave the other branch
unaffected.
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Fig. 11 Ranges for�MK (red region) and εK (blue region) satisfying
the bounds in Eq. (94) (lighter blue) and within its 3σ experimen-
tal range (darker blue) and ε′/ε (green region) within its 2σ range

[11.3, 21.7] × 10−4 for B(1/2)6 = 1 and �qq
R = 0.5 (green) for CKM

scenario ( f ) (top) and (a) (down) and G ′ (left) and Z ′ (right)

• In the ALRS scenario the NP contributions to K + →
π+νν̄ and KL → π0νν̄ vanish. ε′/ε receives NP contribu-
tions but they are unaffected by the ones in KL → μ+μ−.
In this scenario then ε′/ε is not correlated with rare K
decays and the only question we can ask is how the NP
physics contributions to ε′/ε are correlated with the ones
present in εK .

7.2 ReA0 and ReA2

It is straightforward to calculate the values of the Wilson
coefficients entering the NP part of the K → ππ Hamilto-

nian. The non-vanishing Wilson coefficients at μ = MZ are
then given at the LO as follows:

C3(MZ ) = −
[

g

6cW

]
�sd

L (Z)

4M2
Z

,

C ′
5(MZ ) = −

[
g

6cW

]
�sd

R (Z)

4M2
Z

,

(144)

C7(MZ ) = −
[

4gs2
W

6cW

]
�sd

L (Z)

4M2
Z

,

C ′
9(MZ ) = −

[
4gs2

W

6cW

]
�sd

R (Z)

4M2
Z

(145)
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C9(MZ ) =
[

4gc2
W

6cW

]
�sd

L (Z)

4M2
Z

,

C ′
7(MZ ) =

[
4gc2

W

6cW

]
�sd

R (Z)

4M2
Z

.

(146)

We have used the well-known flavour conserving cou-
plings of Z to the quarks, which are collected in the same
notation in the appendix in [33]. The SU (2)L gauge cou-
pling constant is g(MZ ) = 0.652. We note that the values of
the coefficients in front of�L ,R are in the case of C9 and C ′

7
by a factor of 3 larger than for the remaining coefficients.

We will first discuss the LHS scenario so that�sd
R (Z) = 0.

Similar to Z ′ scenarios only left–right operators are relevant
at low energy scales but this time it is the electroweak penguin
operator Q8 that dominates the scene. Concentrating then on
the operators Q7 and Q8, the relevant one-loop anomalous
dimension matrix in the (Q7, Q8) basis is very similar to the
one in (20),

γ̂ (0)s =
(

2 −6
0 −16

)
. (147)

Performing the renormalisation group evolution from MZ

to mc = 1.3 GeV we find

C7(mc) = 0.87 C7(MZ ) C8(mc) = 0.76 C7(MZ ).

(148)

Due to the large element (1, 2) in the matrix (147) and the
large anomalous dimension of the Q8 operator represented
by the (2, 2) element in (147), the two coefficients are com-
parable in size. But the matrix elements 〈Q7〉0,2 are colour
suppressed, which is not the case of 〈Q8〉0,2, and within a
good approximation we can neglect the contributions of Q7.
In summary, it is sufficient to keep only the Q8 contributions
in the decay amplitudes in this scenario for flavour-violating
Z couplings.

We find then

ReANP
0 = ReC8(mc)〈Q8(mc)〉0,

ReANP
2 = ReC8(mc)〈Q8(mc)〉2. (149)

Now the relevant hadronic matrix elements of Q8 operator
are given as follows:

〈Q8(mc)〉2

〈Q6(mc)〉0
≈ − R8

R6

Fπ

2
√

2(FK − Fπ )

= −1.74
B(3/2)8

B(1/2)6

, (150)

ReANP
2

ReANP
0

= 〈Q8(mc)〉2

〈Q8(mc)〉0
≈ Fπ√

2FK

B(3/2)8

B(1/2)8

= 0.59
B(3/2)8

B(1/2)8

, (151)

with B(3/2)8 = B(1/2)8 = 1 in the large N limit but otherwise

expected to be O(1) as confirmed in the case of B(3/2)8 by
lattice QCD [21].

It is evident from (151) that the explanation of the miss-
ing piece in ReA0 with Z exchange would totally destroy
the agreement of the SM with the data on ReA2. Rather we
should investigate the constraint on Re�sd

L (Z), which would
allow us to keep this agreement in the presence of Z with
FCNC couplings.

Demanding then that at most P% of the experimental
value of ReA2 in (1) comes from the Z contribution, we
arrive at the condition

|Re�sd
L (Z)K8(Z)| ≤ 6.2 × 10−4

[
P%

10 %

]
, (152)

where

K8(MZ ) = −r8(μ)

[
114 MeV

ms(μ)+ md(μ)

]2
[

B(3/2)8

0.65

]
.

(153)

The renormalisation group factor r8(mc) = 0.76 is defined
by

C8(μ) = r8(μ)C7(MZ ), (154)

with C7(MZ ) given in (145).
Consequently we arrive at the condition

|Re�sd
L (Z)|

B(3/2)8

0.65
≤ 8.2 × 10−4

[
P%

10 %

]
. (155)

In fact this bound is weaker than the one following from
�MK . Replacing MZ ′ by MZ , the bound in (70) is now
replaced by

|�sd
L (Z)| ≤ 1.2 × 10−4. (156)

Consequently imposing the �MK bound in the numerical
analysis below we are confident that no relevant NP contri-
bution to ReA2 is present.

7.3 ε′/ε, K + → π+νν̄ and KL → π0νν̄

We could as in the Z ′ case calculate separately the NP con-
tribution to ε′/ε. However, in the present case the initial con-
ditions for Wilson coefficients are at the electroweak scale as
in the SM and it is easier to modify the functions X , Y and
Z entering the analytic formula (53). We find then the shifts

�X = �Y = �Z = cW
8π2

g3

Im�sd
L (Z)

Imλt
. (157)

In doing this we include in fact all operators whose Wilson
coefficients are affected by NP but effectively only the oper-
ator Q8 is really relevant. The final formula for ε′/ε in LHS
scenario is then given by
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Fig. 12 Ranges for�MK (red region) and εK (blue region) satisfying
the bounds in Eq. (94) (lighter blue) and within its 3σ experimen-
tal range (darker blue) and ε′/ε (green region) within its 2σ range

[11.3, 21.7] × 10−4 for B(1/2)6 = 1 for CKM scenario (d) (top left),
( f ) (top right) and (a) (down). The cyan region in case ( f ) corresponds
to the overlap between the green and dark blue region

(
ε′

ε

)

LHS
=
(
ε′

ε

)

SM
+
(
ε′

ε

)L

Z
(158)

where the second term stands for the modification related to
the shifts in (157).

It should be emphasised that the shifts in (157) should
only be used in the formula (53) so that Imλt cancels the
one present in the SM contribution. �X can also be used
in the case of KL → π0νν̄. However, in the case of K + →
π+νν̄, where also real parts matter one should use the general
formula

�X = cW
8π2

g3

�sd
L (Z)

λt
(159)

or equivalently simply use the formulae for K + → π+νν̄
and KL → π0νν̄ in the LHS scenario in [26].

7.4 Numerical analysis in the LHS scenario

In [26] we have performed a detailed analysis of K + →
π+νν̄ and KL → π0νν̄ decays in this NP scenario, imposing
the constraints listed above and from KL → μ+μ− decay,
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Fig. 13 ε′/ε versus B(K + → π+νν̄) (left) and ε′/ε versus B(KL →
π0νν̄) (right) in LHS for scenario ( f ) including the constraints from
�MK , εK from Eq. (94), ε′/ε within its 3σ experimental range for

B(1/2)6 = 0.75 (blue) B(1/2)6 = 1 (red) and B(1/2)6 = 1.25 (green) and
B(KL → μ+μ−) ≤ 2.5 × 10−9. Grey range experimental 2σ range
for ε′/ε

Fig. 14 B(KL → π0νν̄) versus B(K + → π+νν̄) in LHS for scenario
( f ) including the constraints from�MK , εK from Eq. (94) (grey region)
and ε′/ε within its 3σ experimental range for B(1/2)6 = 0.75 (blue)

B(1/2)6 = 1 (red) and B(1/2)6 = 1.25 (green) and B(KL → μ+μ−) ≤
2.5 × 10−9

that is only relevant for K + → π+νν̄. The present analysis
generalises that analysis in two respects:

• We consider several scenarios (a)–( f ) for CKM parame-
ters.

• We analyse the correlation between ε′/ε and the branching
ratios for K + → π+νν̄ and KL → π0νν̄.

It is straightforward to convince oneself that unless
Im�sd

L (Z) = O(10−8) the shifts in (157) imply modifica-
tions of ε′/ε that are not allowed by the data. In turn, the NP
contributions to εK are negligible and the model can only
agree with data on εK for which also the SM agrees with
them. Similar to scenario A in Z ′ case only scenarios (d)
and ( f ) survive the ε′/ε constraint. This can be seen in the
oases plots in Fig. 12. In scenario (d) shown there, and even
more in scenario ( f ), there is an overlap region of the blue
(εK ) and green (ε′/ε) range whereas in (a) and also in the

other CKM scenarios there is none. However, while in sce-
nario (d) there is a clear overlap between the 2σ range of
ε′/ε and the larger range of εK in Eq. (94) (lighter blue),
when using the smaller experimental 3σ range of εK (darker
blue) the overlap is tiny. In contrast in scenario ( f ) the cyan
region corresponds to the overlap of the darker blue and green
region. Therefore in Fig. 13 we show the correlation of ε′/ε
and branching ratios for K + → π+νν̄ and KL → π0νν̄

and in Fig. 14 for the correlation between K + → π+νν̄
and KL → π0νν̄ only for the ( f ) scenario. However, we
checked that in scenario (d) similar results are obtained and
this is also the case of RHS, LRS and ALRS scenarios con-
sidered below. Therefore in the remainder of this section only
results for scenario ( f ) will be shown.

Comparing these results with those in the plots in Figs. 6,
7 and 8 for Z ′ we observe that they are more specific as
the diagonal couplings of Z and its mass are known and
only selected CKM scenarios are allowed. While significant
deviations from SM values for ε′/ε, B(KL → π0νν̄) and
B(K + → π+νν̄) are in principle possible, the bounds from
ε′/ε and KL → μ+μ− that are imposed in these plots do
not allow very large enhancements of both branching ratios
to occur. In particular the bound from ε′/ε does not allow for
the large enhancements of B(KL → π0νν̄) that we found
in [26]. This analysis shows again how important the ε′/ε
constraint is. The correlation between B(KL → π0νν̄) ver-
sus B(K + → π+νν̄) shown in Fig. 14 demonstrates in a
spectacular manner the action of the ε′/ε and KL → μ+μ−
constraints. Without them the full grey region would still be
allowed by �MK and εK constraints.

The correlation in the right panel of Fig. 13 is similar to
the one encountered in other NP scenarios in which NP in
ε′/ε is dominated by electroweak penguins and the increase
of B(KL → π0νν̄) implies automatically the suppression of
ε′/ε. Therefore only for B(1/2)6 > 1.0, where ε′/ε within the
SM is above the data, large enhancements of B(KL → π0νν̄)
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are possible. For the same sign of the neutrino coupling in
scenario B for Z ′ and �qq

R (Z
′) > 0 the correlation between

ε′/ε and B(KL → π0νν̄) is different, as seen in Fig. 7,
because there the QCD-penguin operator Q6 instead of Q8

encountered here is at work.

7.5 The RHS scenario

We discuss next the RHS scenario as here the pattern of the
NP effects differs from the LHS case. In this scenario NP in
K → ππ is dominated by left–right primed operators. This
time both Q′

6 and Q′
8 have to be considered although at the

end only the latter operator will be important. Within a very
good approximation we have

ANP
0 = C ′

6(mc)〈Q′
6(mc)〉0 + C ′

8(mc)〈Q′
8(mc)〉0, (160)

ANP
2 = C ′

8(mc)〈Q′
8(mc)〉2 (161)

where

C ′
6(mc) = r ′

6(mc)C
′
5(MZ ), C ′

8(mc) = r ′
8(mc)C

′
7(MZ )

(162)

with

r ′
6(mc) ≈ r ′

8(mc) = r8(mc) = 0.76. (163)

Moreover, one has

〈Q′
6(mc)〉0 = −〈Q6(mc)〉0,

〈Q′
8(mc)〉0,2 = −〈Q8(mc)〉0,2. (164)

Proceeding as in the LHS scenario we again find that one
cannot explain the missing piece in ReA0 with Z exchange
without totally destroying the agreement of the SM with the
data on ReA2. Due to the different initial conditions the upper
bound in (155) is replaced by a stronger bound,

|Re�sd
R (Z)|

[
B(3/2)8

0.65

]
≤ 2.5 × 10−4

[
P%

10 %

]
. (165)

But in the RHS scenario the bound on |Re�sd
R (Z)| from

�MK is the same as the one for |Re�sd
L (Z)| in the LHS sce-

nario and consequently no problem with ReA2 arises after
the bound from �MK has been taken into account.

Taking first into account both the Q′
6 and Q′

8 contributions
to ε′/ε, we have
(
ε′

ε

)

Z
= − ω+

|εK |√2

[
Im ANP

0

ReA0
(1 −
eff)− Im ANP

2

ReA2

]
,

(166)

where ReA0 and ReA2 are to be taken from (1).
While both Q′

6 and Q′
8 contribute, the latter operator

wins easily this competition because it is not only enhanced
through the �I = 1/2 rule relative to Q′

6 contribution to

ε′/ε but also because its Wilson coefficient is larger than the
one of Q′

6. This is in contrast to the competition between Q6

and Q8 in the SM, where the much larger Wilson coefficient
of Q6 overcompensates the �I = 1/2 rule effect in ques-
tion. Thus keeping only the Q′

8 operator we find within an
excellent approximation
(
ε′

ε

)R

Z
= ω+

|εK |√2

Im ANP
2

ReA2
= −5.3

×103
[

114 MeV

ms(μ)+ md(μ)

]2
[

B(3/2)8

0.65

]
Im�sd

R (Z) (167)

implying that Im�sd
R (Z) must be O(10−8) in order for ε′/ε

to agree with experiment. Then, similar to the LHS case just
discussed, the NP contributions to εK are negligible and con-
sequently only scenarios (d) and ( f ) for the CKM parameters
survive the test.

The final formula for ε′/ε in the RHS scenario is now
given by
(
ε′

ε

)

RHS
=
(
ε′

ε

)

SM
+
(
ε′

ε

)R

Z
, (168)

where the second term is given in (167).
As far as K + → π+νν̄ and KL → π0νν̄ are concerned

we can use the formulae in [26]. Equivalently in the case of
the RHS scenario one can just make a shift in the function
X (K ):

�X (K ) =
[
�νν̄L (Z)

g2
SM M2

Z

][
�sd

R (Z)

λt

]
,

�νν̄L (Z) = g

2cW
. (169)

Repeating the analysis performed in the LHS scenario for
the RHS scenario we find the results in Figs. 15, 16, 17.
The main messages from these plots when compared with
Figs. 12, 13, 14 are as follows:

• The constraint from ε′/ε is stronger, not allowing enhance-
ments of B(KL → π0νν̄) as large as in the LHS case,

• The constraint from KL → μ+μ− is weaker, allowing for
a larger enhancements of B(K + → π+νν̄).

These results are easy to understand. As already discussed
in [26] the outcome for the allowed values of�sd

R (Z) follow-
ing from �MK and εK is identical to the one for �sd

L (Z).
This is confirmed in Fig. 15, which should be compared with
Fig. 12. But the Wilson coefficient C ′

8(mc) is by a factor of
3 larger than C8(mc) in the LHS case. The difference in sign
of these two coefficients is compensated for by the one of
the hadronic matrix elements so that simply the suppression
of ε′/ε through NP and the ε′/ε constraint in Fig. 15 is by
a factor of 3 stronger than in the LHS case in Fig. 12. On
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Fig. 15 As in Fig. 12 but for RHS

Fig. 16 As in Fig. 13 but for RHS

Fig. 17 B(KL → π0νν̄) versus B(K + → π+νν̄) for scenario ( f ) as
in Fig. 14 but for RHS

the other hand for a given value of �sd
R (Z) the branching

ratios B(KL → π0νν̄) and B(K + → π+νν̄) are not modi-
fied. But the values of Im�sd

R (Z) are now stronger bounded
from above by ε′/ε than in the LHS case, which implies a

stronger upper bound on B(KL → π0νν̄), as is clearly seen
in Fig. 16. While this also has an impact on B(K + → π+νν̄)
on the branch where the two branching ratios are strongly
correlated, on the second branch where Re�sd

R (Z) matters,
the weaker constraint from KL → μ+μ− allows for larger
enhancements of B(K + → π+νν̄) than in the LHS case.
The difference in this pattern between the LHS and RHS
scenarios is best seen when comparing Fig. 14 with Fig. 17.

7.6 The LRS and ALRS scenarios

When both �sd
L (Z) and �sd

R (Z) are present the general for-
mula for ε′/ε is given as follows:

(
ε′

ε

)
=
(
ε′

ε

)

SM
+
(
ε′

ε

)L

Z
+
(
ε′

ε

)R

Z
(170)

with the last two terms representing the LHS and RHS contri-
butions discussed above. Imposing relations between�sd

L (Z)
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Fig. 18 As in Fig. 13 but for LRS

and �sd
R (Z), which characterise the LRS and ALRS scenar-

ios, one can calculate ε′/ε in these scenarios.
As far as rare decays are concerned in the LRS scenario,

the NP contributions to KL → μ+μ− vanish, which allows
in principle for larger enhancement of B(K + → π+νν̄)
than is possible in other scenarios. On the other hand for
fixed values of�sd

L (Z) = �sd
R (Z) the ε′/ε constraint is by a

factor of 4 larger than in the LHS case, because the operators
Q8 and Q′

8 contribute to ε′/ε with the same sign. Therefore
it is evident that the NP effects in B(KL → π0νν̄) will be
even smaller than in the RHS scenario.

But now comes another effect which suppresses the NP
contributions in B(KL → π0νν̄) even further. Indeed one
should recall that in the LRS scenario the�S = 2 analysis is
more involved than in the LHS and RHS scenarios because
of the presence of LR operators which, as we have seen, in
scenario A for the Z ′ play an essential role in allowing one
to satisfy the constraints from �MK and ReA0. But in the
case at hand the constraints from�MK and εK imply simply
much smaller allowed values of �sd

L (Z) = �sd
R (Z) and in

turn smaller NP effects in the branching ratios B(KL →
π0νν̄) and B(K + → π+νν̄). This is partially compensated
by the fact that now for fixed �sd

L (Z) = �sd
R (Z) the NP

contributions to the amplitudes for KL → π0νν̄ and K + →
π+νν̄ are enhanced by a factor of 2 and in the case of K + →
π+νν̄ by the absence of the KL → μ+μ constraint. The
final result of this competition is shown in Figs. 18 and 19.
In particular B(K + → π+νν̄) can be very much enhanced.
Comparison of Figs. 14 (LHS), 17 (RHS) and 19 (LRS) could
one day allow us to distinguish between these three scenarios,
provided deviations from the SM predictions will be sizable.

In the ALRS scenario the NP contributions to K + →
π+νν̄ and KL → π0νν̄ vanish but ε′/ε is modified. For the
same values of �sd

R (Z) = −�sd
L (Z) the NP effect in ε′/ε is

only by a factor of 2 larger than in the LHS scenario because
the contribution of Q′

8 operator to ε′/ε is partially cancelled
by the one of Q8. Moreover, as in the LRS scenario the values
of the coupling �sd

R (Z) = −�sd
L (Z) must be reduced in

Fig. 19 B(KL → π0νν̄) versus B(K + → π+νν̄) for scenario (d)
and ( f ) as in Fig. 14 but for LRS

order to satisfy the �MK and εK constraints. But on the
whole the results do not look interesting and we refrain from
showing any plots.

8 Summary and conclusions

In the present paper we had two main goals:

• to investigate whether a subleading part of the �I = 1/2
rule, at the level of 20–30 %, could be due to NP contribu-
tions originating in tree-level FCNC transitions mediated
by a heavy colourless gauge boson Z ′ or an SU (3)c colour
octet of gauge bosons G ′,

• to extend our previous analysis of tree-level Z ′ and Z
FCNCs in [26] to the ratio ε′/ε and as a byproduct to
update the SM analysis of this ratio. This was in particular
motivated by the rather precise value of B(3/2)8 obtained
from QCD lattice calculations [21] that governs the elec-
troweak penguin contributions to ε′/ε.

As the experimental value for the smaller amplitude ReA2

has been successfully explained within the SM, both within
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Fig. 20 Budgets of different
enhancements of ReA0, denoted
here by �ReA0. Z ′ and G ′
denote the contributions
calculated in the present paper.
The remaining coloured
contributions come from the SM
dynamics as calculated in [17].
The white region stands for the
missing piece

dual representation of QCD as a theory of weakly interact-
ing mesons [17] and by QCD lattice calculations [18–21] we
concentrated our analysis in the context of the first goal on
the large amplitude ReA0, which is by a factor of 22 larger
than ReA2 and its experimental value is not fully explained
in these two approaches. In order to protect ReA2 from mod-
ifications we searched for NP that would have the property
of the usual QCD-penguins. They are capable of shifting
upwards ReA0 by an amount that at scales O(1 GeV) is
roughly by a factor of 3 larger than ReA2 without producing
any relevant modification in the latter amplitude up to small
isospin breaking effects.

However, due to GIM mechanism the QCD-penguin con-
tribution within the SM is not large enough to allow one
within the dual approach to QCD to fully reproduce the exper-
imental value of ReA0 [17]. Therefore we searched for a
QCD-penguin like contribution that is not GIM suppressed.
As we have demonstrated in the present paper, a neutral
heavy gauge boson with FCNCs (with or without colour)
and approximately flavour universal right-handed diagonal
couplings to quarks is capable of providing an additional
upward shift in ReA0 while satisfying the constraints from
εK ,�MK , ε′/ε and the LHC. Even if the structure of the rel-
evant couplings must have a special hierarchy, summarised
in (7), (84) and (133), we find this result interesting. Indeed
our toy models for Z ′ and G ′ together with the dominant SM
dynamics provide a better description of the �I = 1/2 rule
that it is presently possibly within the SM so that in these NP
scenarios we find that the values

R = ReA0

ReA2
≈ 18 (Z ′), R = ReA0

ReA2
≈ 21 (G ′) (171)

can be obtained. This is fully compatible with the experimen-
tal value in (2), even if in the case of Z ′ this ratio is visibly
below the data. These results are summarised in Fig. 20 where
also the budget of different SM contributions calculated in
[17] is shown.

We identified a quartic correlation between the NP contri-
butions to ReA0, ε′/ε,�MK and εK , which offers means for
a more precise determination of the required properties of the
neutral gauge bosons in question. Moreover, in order to stay
within the perturbative regime for the couplings involved and
explain the �I = 1/2 rule, MZ ′ in scenario A has to be at
most a few TeV so that these simple extensions of the SM
can be tested through the upgraded LHC and rare decays in
the flavour precision era.

As our first goal, termed scenario A, led to a fine-tuned
scenario that could be ruled out one day, as a plan B, we
have considered scenario B for both tree-level heavy neu-
tral gauge boson exchanges and Z boson exchanges ignor-
ing the �I = 1/2 rule constraint and concentrating on
ε′/ε and its correlation with branching ratios for rare decays
K + → π+νν̄ and KL → π0νν̄. In this scenario MZ ′ can be
well above the LHC range and its increase can be compen-
sated for by the increase of Z ′ couplings still fully within the
perturbative regime.

The most important findings of our paper are as follows:

• Within models containing only left-handed or only right-
handed flavour-violating Z ′ or G ′ couplings to quarks it is
impossible to generate any relevant contribution to ReA0

without violating the constraint from �MK . The same
applies to models with left-handed and right-handed cou-
plings being equal or differing by sign.

• On the other hand Z ′ having in addition to �sd
L (Z

′) =
O(1), a small right-handed coupling�sd

R (Z
′) = O(10−3)

and MZ ′ in the reach of the LHC can improve the present
status of�I = 1/2 rule, as summarised in (171), provided
the diagonal coupling�qq

R (Z
′) = O(1). As demonstrated

in [82] and shown in Figs. 3 and 9 such couplings are still
allowed by the LHC data. As seen in (171) even larger
values of R can be obtained in G ′ scenario.

• As far as ε′/ε is concerned, the interesting feature of this
NP scenario is the absence of NP contributions to the
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electroweak penguin part of this ratio, a feature rather
uncommon in many extensions of the SM. NP enters here
only through QCD-penguins and this implies interesting
correlation between the new dynamics in ε′/ε and the
�I = 1/2 rule. In particular, we have identified an inter-
esting correlation between the NP contributions to ReA0,
ε′/ε, εK and �MK , which is shown in Fig. 4 for two sets
of CKM parameters, which among the six considered by
us are the only ones that allow for simultaneous agree-
ment for ε′/ε and εK and the significant contribution of
Z ′ or G ′ to ReA0. This means that only for the inclu-
sive determinations of |Vub| and |Vcb| these heavy gauge
bosons have a chance to contribute in a significant manner
to the �I = 1/2 rule. This assumes the absence of other
mechanisms at work, which would help in this case if the
exclusive determinations of these CKM parameters would
turn out to be true.

• Interestingly, in scenario A for Z ′ NP contributions to the
branching ratio for KL → π0νν̄ are negligible when the
experimental constraint for K + → π+νν̄ is taken into
account.

• As a byproduct we updated the values of ε′/ε in the SM
stressing various uncertainties, originating in the values
of |Vub| and |Vcb|. In particular we have found that the
best agreement of the SM with the data is obtained for
B(1/2)6 ≈ 1.0, that is, close to the large N limit of QCD.

• In the case of Z ′, in the context of scenario B, that is,
ignoring the issue of the �I = 1/2 rule and concentrat-
ing on Z ′ with exclusively left-handed couplings, we have
studied correlations between ε′/ε and the branching ratios
for rare decays K + → π+νν̄ and KL → π0νν̄. In partic-
ular, we have found that for B(1/2)6 = 0.75 for which the
SM value of ε′/ε is much lower than the data, the cure of
this problem through a Z ′ implies very enhanced values
of B(KL → π0νν̄). Simultaneously B(K + → π+νν̄)
is uniquely enhanced so that a triple correlation between
these three observables exists. Figures 6 and 7 show this
in a transparent manner.

• We have also demonstrated that the SM Z boson with
FCNC couplings cannot provide the missing piece in
ReA0 without violating the constraint from ReA2. Still the
correlation between ε′/ε, K + → π+νν̄ and KL → π0νν̄

can be used to test this NP scenario as demonstrated in
Figs. 13 and 14. In particular very large enhancements of
B(KL → π0νν̄) found by us in [26] are excluded when
the constraint from ε′/ε is taken into account: a property
known from other studies.

• We have also investigated various scenarios for flavour-
violating Z couplings stressing different impact of ε′/ε
and KL → μ+μ− constraints on rare branching ratios
B(K + → π+νν̄) and B(KL → π0νν̄). In this context
the comparison of Figs. 14 (LHS), 17 (RHS) and 19 (LRS)

could one day allow us to distinguish between these three
scenarios, provided the deviations from the SM predic-
tions will be sizable.

In summary, a neutral Z ′ or G ′ with very special FCNC
couplings summarised in (7) and the mass in the reach of the
LHC could in principle be responsible for the missing piece
in ReA0. Whether heavy gauge bosons with such properties
exist should be answered by the LHC in this decade. In par-
ticular, a dedicated study of the dashed surface in Figs. 3 and
9 in the context of our simple models would be very inter-
esting, as this would put the bounds used in our paper on a
firm footing. This applies also to the bounds on the coupling
�sd

L (G
′) and the fact that the bounds obtained in [82] where

derived under the condition that either�sd
L or�qq

R is vanish-
ing. The presence of interferences between various contribu-
tions governed by these two couplings would not necessarily
make the bounds on them stronger and could in fact soften
them. Moreover, in the former case the version of our mod-
els in which the primed operator Q′

6 is dominant could still
provide the solution to the �I = 1/2 rule as discussed in
Sect. 5.6.

If Z ′ or G ′ with such properties do not exist, it is likely
that the�I = 1/2 rule follows entirely from the SM dynam-
ics. Confirmation of this from lattice QCD would be in this
case important. On the other hand any Z ′ with non-vanishing
flavour-violating couplings to quarks can have impact on
ε′/ε, K + → π+νν̄ and KL → π0νν̄ and the correlations
between them. This also applies to scenario with flavour-
violating Z couplings. In both cases the numerous plots pre-
sented by us should help in monitoring the exciting events to
be expected at the LHC and in flavour physics in the second
half of this decade.
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