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Abstract Nuclear effects in deep inelastic scattering at low
x are phenomenologically described changing the typical
dynamical and/or kinematical scales characterizing the free
nucleon case. In a holographic approach, this rescaling is
an analytical property of the computed structure function
F2(x, Q2). This function is given by the sum of a confor-
mal term and of a contribution due to quark confinement,
depending on IR hard-wall parameter z0 and on the mean
square distances, related to a parameter Q′, among quarks
and gluons in the target. The holographic structure function
per nucleon in a nucleus A is evaluated showing that a rescal-
ing of the typical nucleon size, z0 and Q′, due to nuclear
binding, can be reabsorbed in a Q2-rescaling scheme. The
difference between neutron and proton structure functions
and the effects of the longitudinal structure functions can
also be taken into account. The obtained theoretical results
favorably compare with the experimental data.

1 Introduction

Deep inelastic scattering (DIS) experiments of charged lep-
tons off nuclei have shown that the structure functions of
nucleons bound in nuclei differ from the structure functions
of free, isolated nucleons. Although in some cases a devia-
tion could be expected considering, e.g., the Fermi motion
of nucleons in nuclei, in general the interpretation and the
predictions of the nuclear modifications have presented con-
siderable difficulties and, not surprisingly, the measurements
have generated an intense theoretical and phenomenological
activity (for a review see [1,2]).

Nuclear effects can be described comparing the structure
functions of the nuclear target, normalized to the number
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of nucleons, to the free nucleon ones. For electroproduc-
tion, if F D

2 is the structure function of the deuterium D and
F A

2 the structure function per nucleon of the nucleus A, the
ratio RA = F A

2 (x, Q2)/F D
2 (x, Q2) is measured for various

values of the Bjorken variable x and the squared momen-
tum transferred Q2. Nuclear modifications are observed to
depend on x . For x ≤ 0.1 the ratio RA is found RA < 1: this is
the so-called shadowing region. In the range 0.1 < x < 0.25
there is antishadowing, with RA>1. For large x the so-called
EMC effect appears: again a decreasing behavior.

There are different approaches aimed at interpreting such
observations. A few of them make use, both for the EMC
and the shadowing effect, of the idea that the nuclear modi-
fications are mainly due to the change of the effective mean
square distances among quarks and gluons in a nuclear envi-
ronment with respect to free nucleons (for a review see [1]).
Such a geometric modification can be accounted for by a
rescaling of the kinematical variables, x or Q2, in the struc-
ture functions of a free nucleon. This is the case, for example,
of the so-called x-rescaling model, where the EMC effect
is described by rescaling the Bjorken x variable in the free
nucleon F D

2 [3,4]:

F A
2 (x, Q2) = F D

2 (x/ẑ, Q2). (1)

The factor ẑ is defined as ẑ � 1−ε/M , in terms of the proton
mass M and of the energy ε necessary to emit a nucleon from
a nucleus. A difficulty of this model is that the values of the
energy ε to fit the large-x data exceed the calculations of the
nuclear binding (for a review see [1]).

The Q2-rescaling model of the EMC effect is based on
the relation [5–8]

F A
2 (x, Q2) = F D

2 (x, χA Q2), (2)

indicating that the effective Q2 for a bound nucleon is differ-
ent from the free one. Such a dynamical property is related
to the modification of the quark confinement scale in the
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nucleus [5–8]: quarks and gluons are no longer confined to
specific nucleons, but spread over distances larger than the
free nucleon size. By studying the moments of the structure
function, starting from a Q2 region where the valence pic-
ture is a good approximation, one can show that in QCD, for
large Q2, the change of scale is related to the strong cou-
pling constant αs . It is worth remarking that the x- and Q2-
rescaling models, although different in their assumptions, can
be related [9,10].

A different nonperturbative approach considers that the
low-x region is governed by the Pomeron exchange [11,12].
In a nuclear environment, the nucleon overlap produces a sup-
pression of the effective quark–Pomeron coupling. Indeed,
although quarks and gluons are no longer confined to spe-
cific nucleons and spread over distances larger than the free
nucleon size, the average spatial separation between the
quarks before color neutralization decreases, and this reduces
the Pomeron coupling which is related to such a typical size
[13].

The idea that the description of the nuclear modifications
requires to evaluate the change of the free nucleon wave func-
tion induced by the nuclear binding can find a support in an
analysis based on the holographic approach. The AdS/CFT,
or gauge/gravity correspondence principle (see, e.g. [14]),
[15–17] is important to access the nonperturbative sector of
gauge theories, and can be used to study features of QCD
[18–21]. The method has been applied to DIS at strong cou-
pling [22–38]. In particular, at low x the nucleon structure
function F N

2 (x, Q2) has been computed in Ref. [39], and has
been represented as a conformal contribution and an addi-
tional term accounting for quark confinement. Both contri-
butions involve the holographic nucleon wave function: since
the confinement dynamics determines the modification of the
structure functions of a nucleon in nuclei, the holographic
baryon wave function in nuclei affects the nuclear struc-
ture functions. Following this viewpoint, in the study [40]
we attempted a description of shadowing in a gauge/gravity
framework, using in the low-x region the AdS/CFT strong
coupling BPST Pomeron kernel computed in [41]. The holo-
graphic free nucleon wave function is assumed to be peaked
at a distance 1/Q′ close to the boundary z0. In the description
of the nuclear binding effects, the wave function of the bound
nucleon must involve a different effective distance 1/Q′

A and
a new confinement boundary z A

0 . Studying the scaling prop-
erties of the holographic expression for F2 under the replace-
ment Q′ → Q′

A and z0 → z A
0 , nuclear effects turn out to be

described by a rescaling of the confinement parameters, with
remarkable agreement with measurements.

Here, we discuss this idea in more detail, including the
difference between proton and neutron structure functions,
analyzing a few approximations adopted in Ref. [40], consid-
ering the x-rescaling scheme, carrying out a more complete
comparison with the experimental data, evaluating the effects

of the longitudinal structure function. The paper is organized
as follows: in Sect. 2 we review the low-x behavior of the pro-
ton structure functions in a holographic approach, and dis-
cuss the neutron–proton difference. Section 3 contains the
model for the nuclear modifications of the structure func-
tions, which is compared with data in Sect. 3.2. In Sect. 4 we
discuss the longitudinal structure function in nuclei, and in
Sect. 5 we present our conclusions.

2 Holographic proton structure functions

The AdS/CFT calculation of DIS at low x on a proton was
first considered by Polchinski and Strassler in [22,23]. After
this seminal proposal, several calculations have been carried
out in various holographic frameworks [22–38]. In particu-
lar, in [39] the nucleon structure function F2 was computed
analyzing the virtual γ ∗ p total cross section, and two contri-
butions were obtained, a term for conformal gauge theories
and an additional term accounting for confinement. A slice of
the dual AdS space was used to break the conformal invari-
ance. As shown in [40], this result can be used to analyze
nuclear effects on F2.

The definition in QCD of the structure functions F1(x, Q2)

and F2(x, Q2) of a hadron of momentum P and charge Q is
based on the matrix element of two electromagnetic currents

Tμν ≡ i
∫

d4 yeiq·y〈PQ|T (
Jμ(y)J ν(0)

) |PQ〉, (3)

which can be written as

Tμν = F1(x, Q2)

(
ημν − qμqν

q2

)

+2x

q2 F2(x, Q2)

(
Pμ + qμ

2x

) (
Pν + qν

2x

)
. (4)

μ, ν are four-dimensional indices, ημν the Minkowski met-

ric, the Bjorken variable x is x = Q2

2P · q
, with Q2 = −q2.

The AdS/CFT calculation involves R-currents in (3), and
the couplings

gs = g2
Y M

4π
= αY M = λ

4πNC
, R = α′ 1

2 λ
1
4 . (5)

gY M is the Yang–Mills coupling constant, NC the number of
colors, in the regime gs << 1 and λ >> 1. R is the Ad S
radius.

The dual string calculation of the matrix element (3), or
of its imaginary part appearing in DIS processes, describes
the photon–hadron scattering γ ∗ p → γ ∗ p ≡ 1, 2 → 3, 4
as occurring in the AdS space. Various quantities are needed,
starting from the states dual to the initial-final hadron p. For
protons, these states are represented by normalizable wave
functions φ p(z), in principle obtained from a suitable equa-
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tion of motion, with some dependence on the holographic
coordinate z. For the calculation of the matrix element (3)
the transition function is required:

P24(z) = √−g
( z

R

)2
φ p(z)φ p(z). (6)

The current that couples to the hadrons in the matrix ele-
ment (3) excites non-normalizable modes of the gauge fields
A , which in the bulk obey Maxwell’s equations. In the
Lorentz gauge and for R = 1 there are the solutions:
Aμ(y, z) = nμ(Qz)K1(Qz)eiq·y and Az(y, z) = i(q ·
n)(Qz)K0(Qz)eiq·y , given in terms of Bessel functions K1

and K0 and of the polarization vector nμ. The calculation
of the structure function F2 in (3,4) requires the transition
function

P13(z, Q2) = 1

z
(Qz)2

[
K 2

0 (Qz)+ K 2
1 (Qz)

]
, (7)

with Q = √
Q2, while

P13(z, Q2) = 1

z
(Qz)2 K 2

1 (Qz) (8)

is needed for 2x F1. From now on, we focus on F2: the effect
of the nuclear modification on the longitudinal structure func-
tion FL = F2 − 2x F1 will be discussed in Sect. 4.

Finally, the scattering kernel is needed. Expressing it in
terms of a Pomeron Regge pole contribution [41], at low x
the structure function F2 can be written as an eikonal sum
[39]:

F p
2 (x, Q2) = Q2

2π2

∫
d2b

∫
dzdz′ P13(z, Q2)P24(z

′)

×Re
(

1 − eiχ(s,b,z,z′)
)
. (9)

s is the center-of-mass energy squared of theγ ∗-target system
and b the impact parameter. The derivation of the eikonal
χ for conformal theories and including conformal breaking
effects is in Refs. [39,41].

2.1 Conformal term

An expression of the proton structure function F p
2 in the

conformal case, derived from Eq. (9), as been worked out in
Ref. [39]:

F p
2c f (x, Q2) = g2

0ρ
3/2

32π5/2

∫
dzdz′ zz′Q2

τ 1/2 P13(z, Q2)P24(z
′)

×e(1−ρ)τ exp [Φ(z, z′, τ )]. (10)

g2
0 is a parameter and x � Q2/s; ρ is defined in terms of the

’t Hooft coupling in (5), ρ = 2/
√
λ. The function τ , defined

as τ = log (ρzz′s/2), is a conformal invariant.Φ is the BPTS
Pomeron kernel integrated in impact parameter [41]:

Φ(z, z′, τ ) = − (log z − log z′)2

ρτ
. (11)

Equations (9) and (10) involve the transition functions P24

and P13. The proton wave function in the bulk φ p(z), needed
in P24, should be determined by an explicit holographic
model for the baryon. An approximation has been used in
Ref. [39], assuming that φ p(z) is peaked close to the infrared
boundary z0, with 1/Q′ ≤ z0 and Q′ of the order of nucleon
mass, giving

P24(z
′) � δ

(
z′ − 1

Q′

)
. (12)

Moreover, also P13 can be replaced by a local expression

P13(z, Q2) � Cδ

(
z − 1

Q

)
, (13)

with C � 1 [39]. This is justified by the shape of the function
P13 in Eq. (10), which is peaked for z � 1/Q. In Fig. 1 we
depict F p

2c f obtained using the exact expression in Eq. (7) and
the local approximation Eq. (13) for two values of the squared
transferred momentum: the relative difference between the
two expressions is within a few percent for x < 0.07.

The resulting F p
2c f reads [39]

F p
2c f (x, Q2, Q′) = g2

0ρ
3/2

32π5/2

Q

Q′
e(1−ρ)τ

τ 1/2 e−[
log2 (Q/Q′)/ρτ

]
.

(14)

2.2 Confinement term

The expression for the proton structure function F p
2c f , based

on the conformal BPST Pomeron, does not fit the HERA
data in the low-Q2 range, where confinement is the main
dynamical mechanisms [39]. Confinement can be described
in the holographic approach including an infrared boundary
z0 on the z bulk coordinate, a so-called hard-wall holographic
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2
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x

F
2

x

Local , Q 2 25 GeV2

Exact , Q 2 25 GeV2

Local , Q 2 4 GeV2

Exact , Q 2 4 GeV2

Fig. 1 Comparison between F p
2c f in Eq. (10), obtained using Eq. (7)

(labeled as Exact) and the approximation Eq. (13) (labeled as Local),
for Q2 = 4 and 25 GeV2
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model of QCD. This confinement scale can be related to
�QCD. The eikonal is modified and a non-conformal contri-
bution to F p

2 should be considered, which reads for a single
Pomeron [39]

F p
2ct (x, Q2, z0) = g2

0ρ
3/2

32π5/2

∫
dzdz′ zz′Q2

τ 1/2 P13(z, Q2)P24(z
′)

×e(1−ρ)τ e− log2 (zz′/z2
0)

ρτ G(z, z′, τ ). (15)

The z0 dependence is shown explicitly. The function G(z, z′, τ )
is

G(z, z′, τ ) = 1 − 2
√
ρπτeη

2
er f c(η), (16)

with

η = − log
(
zz′/z2

0

) + ρτ√
ρτ

. (17)

Adopting the approximation (12) and (13), Eq. (15) reduces
to

F p
2ct (x, Q2, Q′, Q2

0) = g2
0ρ

3/2

32π5/2

Q

Q′
e(1−ρ)τ

τ 1/2

×e− log2 (Q2
0/(Q Q′))
ρτ G

(
1

Q
,

1

Q′ , τ
)
,

(18)

with Q0 = 1/z0 [39].
The proton structure function F p

2 results from the sum of
the conformal and confinement contribution,

F p
2 (x, Q2) = F p

2cl(x, Q2, Q′)+ F p
2ct (x, Q2, Q′, Q2

0),

(19)

and can successfully be compared with proton DIS data [39].
It is interesting to analyze the relative weight of the con-

formal and confinement contributions to F p
2 at low x . In

Fig. 2 three values of Q2 are considered: at Q2 � 4 GeV2

the structure function is essentially determined by the con-
formal term. On the other hand, the confinement term is the
main contribution at very low Q2 for all the considered values
of the Bjorken x .

2.3 Accounting for isospin effects: neutron structure
function

Isospin effects play an important role in detailed analyses of
nuclear structure functions (normalized to the total number
of nucleons). These effects represent the difference between
the proton and neutron structure function. In the holographic
model, the difference can be implemented in a rather simple
way replacing the scales Q0 and Q′ for the proton with cor-
responding scales Q0n and Q′

n for the neutron. Therefore,
the neutron structure function Fn

2 can be represented by the
expression

0
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F2 , tot

F2 , ct

F2 , tot

Q 2 = 0.013 GeV2

Q 2 = 0.025 GeV2

Q 2 = 3.9 GeV2

Fig. 2 Comparison between conformal and confinement contributions
to F p

2 (x, Q2) at low x , for three values of Q2. The red (dark) lines
correspond to the absolute value |F p

2c f /F p
2 | of the ratio of the conformal

term F p
2c f in Eq. (19) over the full structure function; the green (light)

lines correspond to ratio |F p
2ct/F p

2 | of the confinement contribution F p
2ct

to the full structure function. For the lowest value of Q2 the confinement
term dominates

Fn
2 = F p

2cl(x, Q2, Q′
n)+ F p

2ct (x, Q2, Q′
n, Q2

0n), (20)

with Q0n � Q0, since the proton and neutron have a similar
color confinement scale.

The experimental information on the neutron structure
function comes from DIS on a deuterium target; therefore,
the comparison of the expression (20) with data requires
implementing the nuclear effects discussed in the next sec-
tion. Here we anticipate the proposal to describe the isospin
difference in the holographic formula mainly through the
parameter Q′

n .

3 Nuclear structure functions in holographic
framework

In the Introduction we have mentioned that a physical
description of the EMC and of the shadowing effects can be
obtained considering an effective modification of the dynam-
ical length/momentum scales in deep inelastic scattering pro-
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cesses on a nuclear target with respect to a free nucleon. It is
remarkable that such a rescaling, in particular the Q2 rescal-
ing, is a property of the analytic expression of the holographic
structure function, not only in the conformal term but also in
the term taking the confinement dynamics into account.

Let us focus on the conformal contribution (14) to F N
2

(N = nucleon, neglecting for the moment the proton–
neutron difference), which depends on the ratio Q/Q′. The
description of the modification of the structure function (per
nucleon) F A

2 in the nucleus A, using the rescaling

Q′
A = λA Q′, (21)

corresponds to the rescaling Q2 → Q2/λ2
A. In (21) Q′

A is
identified with the typical scale of the wave function of the
bound nucleon. Consequently, one has

F A
2c f (x, Q2) = F N

2c f

(
x,

Q2

λ2
A

, Q′
)
, (22)

and the Q2-rescaling at low x naturally arises in the confor-
mal contribution to the holographic expression of F2.

In the confinement term in Eqs. (15), (16), and (17) a non-
trivial Q2 behavior appears in the log-factors and in η, due
to the infrared scale Q0. The rescaling Q′

A = λA Q′ can be
reabsorbed in the Q2 rescaling, Q2 → Q2/λ2

A, as in the con-
formal term. Since the dependence on Q0 in Eqs. (15), (16)
and (17) is in the combination Q2

0/Q Q′, the modification
Q′

A = λA Q′ can be reabsorbed in the same Q2 rescaling
also in the confinement term, provided that the confinement
length in the nuclear environment scales in the same way:

Q2
0 → Q2

0/λ
2
A. (23)

The origin of the rescaling (21) and (23) in the AdS/CFT
framework comes from the identification of the bulk coordi-
nate with the energy scale of the dual theory: from the form of
the Ad S metric in Poincaré coordinates, a coordinate rescal-
ing xμ → λxμ on the boundary corresponds to z → λz in
the bulk. In nuclei, due to the nucleon overlap, the average
distance among quarks and gluons decreases and the color
neutralization infrared (confinement) scale increases. These
modifications in the boundary correspond in the bulk, respec-
tively, to z′ → z′/λ and z0 → λz0: these are the prescription
(21) and (23) used to describe the nuclear effects by redefin-
ing the momenta.

In our phenomenological analysis, the following expres-
sion of the structure function F A

2 (per nucleon) in the nucleus
A will be used:

F A
2 (x, Q2) = F N

2cl

(
x,

Q2

λ2
A

, Q′
)

+F N
2ct

(
x,

Q2

λ2
A

, Q′,
Q2

0

λ2
A

)
.

(24)

0.001 0.002 0.005 0.010 0.020 0.050
0.94

0.96

0.98

1.00

1.02

x

R
pd

x

Fig. 3 Comparison between the measurements of the ratio of deu-
terium and proton structure functions F D

2 /F p
2 (black points) [42] and

the expression obtained by Eqs. (25), (26), and (27) (red squares). In the
theoretical formula, the experimental average Q2 for given x is used:
the Q2 values (in GeV2), from the first to the last bin in x , vary in the
range [0.37–5.8]. The χ2 of the fit is χ2/d.o. f. = 0.85

This formula involves the parameter λA, specific of the vari-
ous nuclei, to be fitted from data; moreover, one has to include
the proton–neutron difference, discussed below.

3.1 Deuterium structure function

Accounting for the isospin effects is required in the analysis
of nuclear DIS data. We implement such effects using the
neutron Q0n and Q′

n scales, and representing the structure
function F D

2 (per nucleon) in deuterium as

F D
2 = 1

2

[
F pD

2 + FnD
2

]
, (25)

where

F pD
2 = F p

2

(
x,

Q2

λ2
D

, Q′, Q0

λ2
D

)
, (26)

FnD
2 = Fn

2

(
x,

Q2

λ2
D

, Q′
n,

Q0n

λ2
D

)
. (27)

Since deuterium is a weakly bound system, nuclear effects are
small, and one expectsλD � 1. Indeed, a best fit to data of the
expression (25), shown in Fig. 3, is obtained for λD = 1.011,
with Q0n = 0.192713 and Q′

n = 0.177866. Using these val-
ues of Q′

n and Q0n together with the corresponding parame-
ters for the proton: Q0p = 0.201613 and Q′

p = 0.4333 [39],
the neutron/proton ratio is determined and can be favorably
compared to data in Figs. 3 and 4. As expected, the proton
and neutron confinement scales Q0 nearly coincide.

3.2 Heavy nuclei

Before analyzing the nuclear DIS data, it is worth pointing out
that nuclear modifications of the structure functions for heavy
nuclei have important phenomenological consequences. A
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0.90

0.95

1.00

x

R
pn

x

Fig. 4 Experimental measurements of the ratio Fn
2 /F p

2 (black points)
[43] compared to the ratio of the neutron and proton structure function
evaluated by Eq. (20) (red squares). In the theoretical expression, the
experimental average Q2 for given x is used: from the first to the last
bin in x , the experimental average Q2 (in GeV2) varies in the range
[0.4–2.6]. The χ2 of the fit is χ2/d.o. f. = 0.23

prime example is the identification of the experimental sig-
natures of the formation of a possible new state of matter in
relativistic heavy ion collisions, at the CERN Large Hadron
Collider (LHC) and at the Brookhaven RHIC. The identifica-
tion requires a detailed control of the background processes.
In the investigation of a possible new state of matter, the so-
called “hard-probes” are crucial, i.e. the dynamical processes
originating from hard-parton scattering. The experimental
analyses are focused on the differences in the same phe-
nomenon (jet production, J/ψ suppression, etc.) observed
in nucleus-nucleus collisions with respect to proton–proton
and proton–nucleus scattering, where the obtained energy
density is not enough to produce the transition to the new
phase. Since the hard-parton scattering involves the parton
distribution functions (pdfs), statements on the experimental
signature of the new state of matter using hard-probes cru-
cially depend on the control on the modifications of structure
functions induced by the ordinary nuclear dynamics [44–46].

Coming to the analysis of nuclear DIS data, the holo-
graphic expression of F A

2 for a nucleus with charge Z can be
written as

F A
2 (x, Q2) =

(
Z

A

)
F p

2

(
x,

Q2

λ2
A

, Q′, Q0

λ2
A

)

+
(

1 − Z

A

)
Fn

2

(
x,

Q2

λ2
A

, Q′
n,

Q0

λ2
A

)
, (28)

with the proton and neutron structure functions in Eqs. (19)
and (20), and the scaling parameter λA accounting for the
nuclear modification. For different nuclei, the ratio RA =
F A

2 /F D
2 can be analytically evaluated at small Q2 and small

x , in a regime where the perturbative approach cannot be
applied. The results can be compared to the experimental
data, using the data sets in Table 1 for the various nuclei,
together with the values of λA in Table 2. The comparison is
shown in Figs. 5 and 6. Considering theχ2/d.o. f. reported in

Table 1 Experimental data sets [47–49] and χ2
d.o. f. of the fit of the

structure function F A
2 for each nucleus. The third column reports the

χ2
d.o. f. of fits without isospin breaking, the fourth and fifth columns

correspond to fits with the isospin-breaking effect included. In the last
column, the experimental average Q2 ranges (in GeV2) for the various
cases are indicated, from the first to the last bin of the Bjorken x

Nucleus no. points χ2
d.o. f. n. points χ2

d.o. f. Range of
〈
Q2

〉

He 9 1.09 9 0.24 [0.77–6.3]

Li 9 0.93 9 0.79 [0.03–1.4]

Be 6 0.21 6 0.30 [3.4–11.4]

C 9 1.61 15 0.89 [0.03–6.4]

Al 6 0.23 6 0.21 [3.4–11.6]

Ca 9 8.0 9 3.87 [0.6–6.8]

Fe 6 0.41 6 0.42 [3.4–11.8]

Pb 6 1.11 6 0.93 [3.4–11.6]

Table 2 Rescaling parameter λA obtained using the holographic
expression for F A

2 and taking into account the isospin breaking. The
values in the last column are obtained within the QCD dipole model
[52,53]

Nucleus λA (holography) λA,dip [52,53]

Li 1.843 1.130

Be 1.764 1.140

C 1.775 1.160

Al 1.972 1.264

Ca 2.006 1.338

Fe 2.090 1.413

Pb 2.286 1.780

Table 1 for each nucleus, the agreement of the theoretical for-
mula with data is remarkable, and the x-dependence exhib-
ited by data is closely followed by the theoretical results.

It is interesting to comment on the isospin-breaking
effects, since fits of the nuclear structure functions could also
be done neglecting the proton–neutron difference. The inclu-
sion of the isospin effect improves the accuracy of the fits,
as one can infer from the various χ2

d.o. f. in Table 1; the only

exceptions are Be and Fe, where χ2
d.o. f. remain essentially

unchanged if the isospin breaking is considered.

3.3 x-rescaling

We have shown that, in the holographic approach, the nucleon
structure function F A

2 at low x in a nuclear environment can
be obtained rescaling the effective lengths appearing in the
nucleon wave function in nuclei. It is interesting to notice
that, using the local approximation (12) and (13), one has the
combination τ = log (ρQ/2x Q′). Therefore, the rescaling
Q′

A = λA Q′ could be reabsorbed not in the Q2 rescaling,
but rather in x → λAx . However, due to the Q2 dependence

123



Eur. Phys. J. C (2014) 74:2828 Page 7 of 11 2828

1 10 4 5 10 4 0.001 0.005 0.010 0.050

0.7

0.8

0.9

1.0

x

R
DC

x

0.005 0.010 0.020 0.050
0.85

0.90

0.95

1.00

1.05

x

R
DH

e
x

2 10 4 5 10 4 0.001 0.002 0.005 0.010

0.7

0.8

0.9

1.0

x

R
DL

i
x

0.005 0.010 0.020 0.050

0.7

0.8

0.9

1.0

x

R
DC

a
x

Fig. 5 Ratio F A
2 /F D

2 for various nuclei. The black points correspond
to the experimental measurements with the data sets in Table 1, the red
boxes to the holographic formulas with parameters λA in Table 2. The
isospin-breaking effect has been taken into account. From top-down,
the panels correspond to: C/D, He/D, Li/D, Ca/D. The χ2

d.o. f. of the fit
of the structure functions is in Table 1

of F2 in Eq. (14), the x-rescaling is not equivalent to the Q2

rescaling, and consequently F A
2 (x, Q2/λ2) �= F A

2 (λx, Q2).
One can wonder if the x-rescaling is in agreement with the
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Fig. 6 Ratio F A
2 /FC

2 for various nuclei. The black points correspond
to the experimental measurements with the data sets in Table 1, the red
boxes to the holographic formulas with parameters λA in Table 2. The
isospin-breaking effect has been taken into account. From top-down,
the panels correspond to: Be/C, Al/C, Fe/C, Pb/C. The χ2

d.o. f. are in
Table 1

data: looking at Fig. 7 we conclude that this is not the case,
not surprisingly, since the x-rescaling has been proposed as
a possible explanation of the EMC effect at large-x .
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2 (black
points) with the result obtained by x-rescaling in the holographic expres-
sion of the structure function (red boxes)

3.4 Remarks

As we have discussed, in the holographic formula the nuclear
effects in the DIS structure functions can be described by a
Q2-rescaling, corresponding to a modification of the con-
finement length for a bound nucleon. Other different meth-
ods produce similar results. An example is the QCD dipole
model [50,51], where the structure functions are determined
considering a virtual photon γ ∗ splitting in a quark-antiquark
dipole which interacts with the target T . Encoding the energy
and target size dependence of the dipole-target cross section
σγ

∗T in the saturation scale QS,T (x) [52,53], σγ
∗T turns out

to depend only on the ratio τ 2
T = Q2/Q2

S,T (x). This implies a
geometric scaling between the nucleus and the nucleon cross
sections [52,53]:

σγ
∗ A(τA)

πR2
A

= σγ
∗ N (τN )

πR2
N

, (29)

with radii RN ,A and

τ 2
A = τ 2

N

(
πR2

A

AπR2
N

)1/δ

. (30)

The consequence is

Q2
S,A = Q2

S,N

(
AπR2

N

πR2
A

)1/δ

. (31)

Since the cross section only depends on Q2/Q2
S,T (x), the

replacement Q2
S,N → Q2

S,A corresponds to rescaling

Q2 → Q2/λ2
A,dip, (32)

with

λA,dip =
(

AπR2
N

πR2
A

)1/2δ

. (33)

In the dipole model low-x nuclear data are reproduced for
RA = (1.12A1/3 − 0.86A−1/3) fm, πR2

N = 1.55 fm2, and
δ = 0.79 [52,53].

In Table 2 we compare the rescaling parameters λA

obtained in the holographic and in the QCD dipole model.
Regardless of the difference between the two theoretical
approaches, the rescaling parameters differ by less than 30–
35 %; however, the deviation is larger than in the case where
the isospin breaking is neglected [40].

It would be interesting to extend the analysis to the anti-
shadowing region, for which no dynamical description is
available at present, and the comparisons with experimen-
tal data are based on the energy-momentum sum rule for the
modified parton distribution functions (studies of the energy-
momentum tensor in the framework of AdS/QCD, with appli-
cations to nucleon properties, can be found in [54]). This
study is not a straightforward application of the methods
described above. Indeed, antishadowing probably requires
a different rescaling mechanism, and we defer it to a future
dedicated investigation.

4 Nuclear modification of the longitudinal structure
function

The experimental determination of the structure function per
nucleon in a nucleus is usually done by cross section data,
assuming a minor nuclear effect on the longitudinal structure
function FL = F2 − 2x F1, hence using the value of the free
nucleon F N

L . This procedure has to be checked, because it
introduces an uncertainty in the evaluation of the nuclear
structure functions which, in turn, implies an uncertainty in
the determination of the modified pdfs.

A holographic expression for the longitudinal structure
function FL can obtained from Eqs. (10) and (15), using the
local approximation for P24, and for P13

P13(z, Q2)|FL = 1

z
(Qz)2 K 2

0 (Qz). (34)

For the proton, the comparison with the experimental data
[55] is shown in Fig. 8.

For the nuclear case, using the values of the parameters
determined above, we obtain for the ratio F A

L /F p
L the results

in Fig. 9.
In order to evaluate the uncertainty in the extraction of

the nuclear structure functions, we recall that the structure
function is experimentally determined by data on the reduced
cross section σr :

σr = F2

[
1 − f (y)

FL

F2

]
, (35)

where
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f (y) = y2

1 + (1 − y)2
. (36)

Let us call F̂ A
2 the structure function per nucleon; it is

obtained by the relation

σr = F̂ A
2 − f (y)F N

L , (37)

i.e., using the longitudinal structure function of the free
nucleon, without nuclear effects. F̂ A

2 is an approximation
of F A

2 which should be determined by the relation
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Fig. 10 Maximum uncertainty (y = 1) in the experimental determina-
tion of the structure function F A

2 due to the absence of nuclear effects
in FL . The top panel corresponds to Fe, the bottom one to Pb

σr = F A
2 − f (y)F A

L . (38)

By the expression of F A
2 in Eq. (24), and using the previous

equations, one can evaluate the uncertainty on F A
2 :

�F A
2 = F̂ A

2 − F A
2

F̂ A
2

= 1 − F A
2

F A
2 + f (y)(F N

L − F A
L )
. (39)

As shown in Fig. 10, the maximum uncertainty (correspond-
ing to y = 1) in the extraction of F A

2 is of the order of a few
percent also in the region of very low x and Q2.

This is consistent with the results in Ref. [56], where the
longitudinal structure function in nuclear DIS at small x and
Q2 ≥ 4 GeV2 is discussed in the framework of universal
parton densities obtained in DGLAP analysis at next-leading-
order (NLO), with the conclusion that the uncertainty in F A

2
is smaller than 10 %.
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5 Conclusions and perspectives

A description of nuclear shadowing, i.e. the distortion at low
x of the nuclear DIS structure functions, can be obtained by
a rescaling the virtual photon momentum Q2, and this modi-
fication naturally emerges in a holographic approach. Exper-
imental data for electroproduction are theoretically repro-
duced, hence the AdS/CFT formulation captures the relevant
dynamics to describe the nuclear DIS effects.

The next step of the study would be the analysis of the
experimental results for DIS neutrino scattering on nuclear
target, an interesting issue due to the large theoretical uncer-
tainties in current calculations of neutrino cross section at
high energy and very low x [57]. Universality of nuclear
effects in DIS has been recently shown [58] by the analysis
of neutrino data which takes into account the different nor-
malizations of independent experiments: the nuclear modifi-
cations are found to be the same as in electroproduction. A
calculation in the holographic framework would require the
solution of the equation of motion for charged currents in the
bulk, to obtain an expression analogous to (7): this analysis
deserves a dedicated study. For the time being, simple argu-
ments are encouraging. Indeed, for a correct normalization
procedure and to facilitate the data comparison with theory,
in Ref. [58] the ratio between neutrino data on nuclear target
and the theoretical proton cross section (i.e. without nuclear
effects) are considered, instead of the absolute experimental
cross section. The average value of this ratio, RνA, in the small-
x bins, turns out to be RνA � 0.94 ± 0.09 for x = 0.015,
RνA � 1 ± 0.08 for x = 0.045 and RνA � 1.03 ± 0.05 for
x = 0.08 [58]. Neglecting the contribution of the structure
function x F3 to the cross section, which should be small
in the considered kinematical region, a comparison can be
done between RνA and the ratio F Fe

2 /F p
2 evaluated in the

holographic approach for the corresponding average val-
ues of x and Q2. One obtains F Fe

2 /F p
2 � 0.88, 0.93, 0.97

for x = 0.015, 0.045, 0.08, respectively, consistent with
the corresponding RνA. Therefore, the approach based on
the holographic method is also promising for other anal-
yses, for instance neutrino scattering. Moreover, different
ways of introducing a conformal symmetry breaking through,
e.g., a background dilaton [59] represent variants worth
to be investigated for the calculation of the nuclear struc-
ture functions on the basis of the ideas exploited in our
study. Since the holographic method can be applied to small
Q2 values, our conclusions confirm the complementarity
of the AdS/CFT inspired techniques with the perturbative
calculations.
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