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Abstract We study the thermodynamics and thermody-
namic geometry of the Park black hole in Hořava gravity. By
incorporating the ideas of differential geometry, we investi-
gate the thermodynamics by using the Weinhold and the Rup-
peiner geometry. We have also analyzed it in the context of
the newly developed geometrothermodynamics (GTD). The
divergence of the specific heat is associated with a second-
order phase transition. Here in the context of the Park black
hole, both Weinhold’s metric and Ruppeiner’s metric well
explain this phase transition. But these explanations depend
on the choice of the potential. Hence the Legendre invariant
GTD is used, and with the true singularities in the curvature
scalar, they well explain the second-order phase transition.
All these methods together give an exact idea of all the behav-
iors of the Park black hole thermodynamics.

1 Introduction

Over the past decade, a lot of interest has been given to var-
ious black holes in anti-de Sitter (AdS) space as well as in
de Sitter (dS) space, due to the success of the AdS/CFT cor-
respondence [1] and hence the proposal of the dS/CFT cor-
respondence [2–4]. So by studying the thermodynamics of
these black holes, one may obtain a real connection between
gravity and quantum mechanics. Hořava proposed [5–7] a
field theoretical model in 2009, which can be considered as a
UV complete theory of gravity without full diffeomorphism
invariance. It can be reduced to Einstein’s theory in the IR
regime and is non-relativistic in the UV regime. Recently its
black hole solutions and thermodynamics have been inten-
sively investigated [8–20]. Later, Park has obtained a λ = 1
black solution, known as Park black hole [21]. By introduc-
ing two parameters ω and �W , Park found that both dS and
AdS solutions exist.
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In almost all macroscopic systems, usual thermodynamics
entirely depends on the empirical results under certain con-
straints. But when we incorporate geometrical concepts into
thermodynamics, it will further illuminate the hope toward
the quantization of gravity. Gibbs [22] and Caratheodory [23]
put forward the idea of applying differential geometry in
thermodynamics. Later Hermann [24] and Mrugala [25,26]
developed the idea of introducing contact geometry into the
thermodynamic phase space. In 1976 Weinhold [27,28] pro-
posed an alternative approach with a metric, known as Wein-
hold’s metric defined ad hoc as the Hessian of the internal
energy. The Weinhold’s metric is given by

gW
i j = ∂i∂ jU (S, Nr ), (1)

where Nr denotes the other extensive variables of the system.
Many studies have been done using this metric. But later it
was understood that the geometry based on this metric seems
to be physically meaningless in the context of purely equi-
librium thermodynamics. In 1979 Ruppeiner [29] introduced
another metric in an attempt to formulate the concept of ther-
modynamic length. Ruppeiner’s metric is defined as

gR
i j = −∂i∂ j S(M, Nr ), (2)

where this metric is conformally equivalent to Weinhold’s
metric and the geometry that can be obtained from these two
are related through a line element relationship [30,31],

ds2
R = 1

T
ds2

W , (3)

where T denotes the temperature. For systems like the ideal
classical gas, the multicomponent ideal gas, the ideal quan-
tum gas, the 1-dimensional Ising model, the van der Waals
model etc., the results obtained with the above two metrics are
found to be consistent [32–42]. But when we consider black
hole systems, it is found that these two metrics fail in explain-
ing the properties as well as they lead to many puzzling situ-
ations. Among these inconsistencies, the dependence of the
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metric on the thermodynamic potential is the main prob-
lem [46,47]. Geometrothermodynamics (GTD) [43–45] is
the newest approach among the geometric methods. The puz-
zling properties occurred in the previous methods is due to
the fact that the system possesses different properties, when
different thermodynamic potentials are used. But in the frame
work of GTD, the metric we are considering is invariant with
respect to Legendre transformation, hence they are indepen-
dent of the choice of the thermodynamic potential of the
system.

To investigate the mathematical structure of thermody-
namics, it is necessary to use contact geometry. In GTD, to
introduce the language of differential geometry in thermo-
dynamics, we will consider (2n +1)-dimensional thermody-
namic phase space T . The coordinates of this phase space are
defined by the set where Z A = {�, Ea, I a}, where � is the
thermodynamic potential, Ea represents a set of n extensive
variables, and I a is the corresponding dual intensive vari-
ables, with a = 1, 2, . . . , n. Now the contact one form can
be written as

� = d� − δab I ad Eb; δab = diag(1, 1, . . . , 1) (4)

The pair (T ,�) defines a contact manifold [24] if T is
differentiable and � satisfies the condition � ∧ (d�)n �= 0.
Consider G as a non-degenerate metric on T . Then the set
(T ,�, G) defines a Riemannian contact manifold [24,48]
or the phase manifold. An n-dimensional Riemannian sub-
manifold E ⊂ T is defined as the equilibrium manifold by a
smooth map ϕ : E → T which satisfies the pullback condi-
tion ϕ∗(�) = 0. Then the metric induced on this equilibrium
manifold E , known as the Quevedo metric, plays the same
role as that of Weinhold’s and Ruppeiner’s metric. This met-
ric can be written as follows,

G = (d� − δab I ad Eb)2 + (δab Ea I b)(ηcdd Ecd I d) (5)

and

gQ = ϕ∗(G) =
(

Ec ∂�

∂ Ec

) (
ηabδ

bc ∂2�

∂ Ec∂ Ed
d Ead Ed

)

(6)

with ηab = diag(−1, 1, 1, . . . , 1) and this metric is Legendre
invariant because of the invariance of the Gibbs one form.

This paper is organized as follows. In Sect. 2, we review
the Park solution in Hořava gravity and its usual thermody-
namics in detail. In Sect. 3, different thermodynamic geom-
etry methods including GTD are studied in the case of the
Park black hole by a detailed analysis of both the dS and the
AdS cases. And paper concludes in Sect. 4 with a discussion
regarding the results obtained from the present work.

2 Park solution in Hořava gravity
and its thermodynamics

Let us consider the ADM decomposition of the metric,

ds2
4 = −N 2c2dt2 + gi j

(
dxi + N i dt

) (
dx j + N j dt

)
,

(7)

and the IR modified Hořava action can be written as

S =
∫

dtd3x
√

gN

[
2

κ

(
Ki j K i j − λK 2

)
− κ2

2ν4 Ci j C
i j

+ κ2μ

2ν2 εi jk R(3)
il ∇ j R(3)l

k − κ2μ2

8
R(3)

i j R(3)i j

+ κ2μ2ω

8(3λ − 1)
R(3) + κ2μ2

8(3λ − 1)

×
(

4λ − 1

4
(R(3))2 − �W R(3) + 3�2

W

)]
, (8)

where Ki j and Ci j are the extrinsic curvature and the Cot-
ton tensor, respectively and κ, ν, μ, λ,�W , ω are constant
parameters. Among them �W is related to the cosmological
constant by the relation,

�W = 3

2
�. (9)

The last term in (8) represents a soft violation of the
detailed balance condition [5]. For static and spherically sym-
metric solution, substituting the metric ansatz as

ds2 = −N (r)2c2dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2 θdφ2

)
,

(10)

in the action (8) and after angular integration, we obtain the
Lagrangian as

L = κ2μ2

8(1 − 3λ)

N√
f

[
(2λ − 1)

( f − 1)2

r2 − 2λ
f − 1

r
f ′

+ λ − 1

2
f ′2 − 2(ω − �W )(1 − f − r f ′) − 3�2

W r2
]

.

(11)

Kehagias and Sfetsos [10] obtained only the asymptotically
flat solution (with �W = 0) while Mu-In Park [21] consid-
ered an arbitrary �W and obtained a general solution. Now
the variations with respect to N and f give the equations of
motion

(2λ − 1)
( f − 1)2

r2 − 2λ
f − 1

r
f ′ + λ − 1

2
f ′22(ω − �W )

×(1 − f − r f ′) − 3�2
W r2 = 0, (12)
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and(
N√

f

)′ (
(λ − 1) f ′ − 2λ

f − 1

r
+ 2(ω − �W )r

)

+(λ − 1)
N√

f

(
f ′′ − 2( f − 1)

r2

)
= 0. (13)

By giving λ = 1 and solving the field equations, we arrive
at the Park solution [21],

N 2 = fPark = 1 + (ω − �W )r2

−
√

r [ω(ω − 2�W )r3 + β], (14)

where β is an integration constant related to the black hole
mass. Park’s solution can easily be reduced to Lü, Mei, and
Pope (LMP)’s solution [8] as well as Kehagias and Sfetsos
(KS)’s solution [10].

Now let us consider (14) in detail. For r 
 [β/|ω(ω −
2�W )|]1/3, we can arrive at two solutions. First one is the
asymptotically AdS case with �W < 0 and ω > 0,

f = 1 + |�W |
2

∣∣∣∣�W

ω

∣∣∣∣ r2 − 2M√
1 + 2|�W /ω|

1

r

+O(r−4), (15)

and the second one is the asymptotically dS case with �W >

0 and ω < 0,

f = 1 − �W

2

∣∣∣∣�W

ω

∣∣∣∣ r2 − 2M√
1 + 2|�W /ω|

1

r
+ O(r−4).

(16)

The thermodynamics of the Park black hole has been stud-
ied in [21,49]. Now we will further investigate the different
behaviors of these potentials. In general, the Park black hole

solution has two horizons, one cosmological horizon and the
other black hole horizon. By considering the black hole hori-
zon r+, the mass of the Park black hole can be written as

M = 1 + 2(ω − �W )r2+ + �2
W r4+

4ωr+
. (17)

Using the Bekenstein–Hawking area law,

S = A

4
= πr2+, (18)

and the relation

� = (N − 1)(N − 2)

2l2 , (19)

which connects the radius of the curvature l of dS or AdS
space with �, the cosmological constant (where N is the
dimension), one can arrive at the mass–entropy relation,

M = 4S2 − 4l2π S + l4π(π + 2Sω)

4l4π
3
2 ω

√
S

. (20)

Particularly in the dS case, also there exists an upper mass
bound given by

Mbound =
(

4
l2 − ω

)
4

(
S

π

)3/2

. (21)

The thermodynamics regarding this upper mass bound is
studied in [49].

Now other thermodynamic quantities like temperature,
heat capacity and free energy can be obtained from the usual
definitions of them,

T =
(

∂ M

∂S

)
,

C = T

(
∂S

∂T

)
,

F = M − T S. (22)

Here the temperature of the black hole is obtained as

T = 12S2 − 4l2π S + l4π(π − 2Sω)

8l2π
3
2
√

S(l2(π + Sω) − 2S)
, (23)

the heat capacity as

C = 2S(12S2 − 4l2π S + l4π(π − 2Sω)(l2(π + Sω) − 2S)

−24S3 + 4l2S2(7π + 3Sω) + 2l4π S(−5π + 4Sω) + l6π(π2 + 5π Sω − 2S2ω2)
, (24)

and the free energy as

F = −16S3 − 4l2S2(−6π + Sω) − 12l4π S(π + Sω) + l6π(2π2 + 7π Sω + 2S2ω2)

8l4π
3
2
√

Sω(l2(π + Sω) − 2S)
. (25)

We have plotted the variation of the mass against the entropy
in Figs. 1 and 2 for dS and AdS case respectively. Similarly, in
Figs. 3 and 4 the temperature variations are plotted. For the dS
case (Fig. 3), we can see that there is an infinite discontinuity
in temperature and for a certain range of S values temperature
becomes negative also, which indicates the existence of some
unphysical regions. These two anomalous behaviors are due
to the existence of the mass bound given by (21). For the AdS
case (Fig. 4) also there exist some unphysical regions. The
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mass bound
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Fig. 1 Plots of mass M vs. entropy for the dS black hole with l = 1
and ω = −2
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Fig. 2 Plots of mass M vs. entropy for the AdS black hole with l = −1
and ω = 2
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Fig. 3 Plots of temperature T vs. entropy for the dS black hole with
l = 1 and ω = −2

temperature changes continuously in this case without any
discontinuities.

In Figs. 5 and 6 we have plotted the specific heat of the Park
black hole with entropy, while in Figs. 7 and 8, the variation of
the free energy against entropy is plotted. From Fig. 5 we can
see that the Park–dS black hole undergoes a phase transition
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S
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0.1

0.2
T

Fig. 4 Plots of temperature T vs. entropy for the AdS black hole with
l = −1 and ω = 2
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Fig. 5 Plots of the specific heat C vs. entropy for the dS black hole
with l = 1 and ω = −2
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Fig. 6 Plots of the specific heat C vs. entropy for the AdS black hole
with l = −1 and ω = 2

from thermodynamically unstable state to a thermodynami-
cally stable state. In Fig. 7, free energy changes from positive
to negative, supportingly the black hole changes from unsta-
ble to stable state via phase transition. But for Park–AdS
black hole, from Figs. 6 and 8, we can see that black hole
undergoes a continuous transition from initial thermodynam-
ically unstable phase to a stable phase and no phase transition
takes place.
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Fig. 7 Plots of free energy F vs. entropy for the dS black hole with
l = 1 and ω = −2
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Fig. 8 Plots of free energy F vs. entropy for the AdS black hole with
l = −1 and ω = 2

So among Park–dS and Park–AdS black hole, only the dS
case shows a phase transition. Also there are many regions
of these plots, like the negative temperature regions, an
upper mass bound, infinite discontinuity etc., whose phys-
ical meaning are still unrevealed. In the next section we will
investigate further regarding this abnormalities shown by the
black hole. We are aiming at a good explanation of these
observations in terms of different thermodynamic geometric
methods.

3 Thermodynamic geometry of the Park black hole

We now turn to the thermodynamic geometry of the Park
black hole. In order to incorporate the differential geometry
in to the thermodynamic case we will consider l and ω as
the other extensive variables of the present thermodynamic
system. Therefore the Weinhold metric can be written from
(1) as

gW =
⎡
⎣ MSS MSl MSω

MlS Mll Mlω

MωS Mωl Mωω

⎤
⎦

where MS = ∂ M/∂S, etc. On calculating the curvature scalar
of this metric, we arrive at

RW = A(S, l, ω)

3[l2π − 4S]3[8l2π S − 36S2 + l4π(5π − 4ωS)]2 .

(26)

where A(S, l, ω) is a complicated expression with no physi-
cal interest. From the above expression, RW diverges at the
points S = 0.785, S = 2.06 for the dS case and at S = 1.171
for AdS case. (From now on, throughout this paper we are
choosing l = 1 and ω = −2 for dS case and l = −1 and
ω = 2 for the AdS case. Also we are not considering imag-
inary as well as negative roots.) The point S = 0.785 or
r+ = 0.5 corresponds to the infinite discontinuity of tem-
perature and free energy, and one of the points at which the
specific heat becomes zero. Moreover, the mass bound is sat-
urated at this point. But Weinhold’s metric fails to explain any
physical singularities in the AdS case.

Now we will consider the Ruppeiner geometry. The Rup-
peiner metric can be written from (2) as

gR = 1

T

⎡
⎣ MSS MSl MSω

MlS Mll Mlω

MωS Mωl Mωω

⎤
⎦ .

The curvature of this metric is given by

RR = B(S, l, ω)

[l2π − 4S]3[8l2π S − 36S2 + l4π(5π − 4ωS)]2[4l2π S − 12S2 + l4π(π − 2ωS)][−2S + l2(π + ωS)]3 . (27)

where B(S, l, ω) is also a long complicated expression with
less physical interest. For dS and AdS cases, RR possesses
singularities at points S = 0.785, 2.43 and S = 0.906,
respectively. The point, S = 0.785 is well explained by
Weinhold’s metric. But the point, S = 2.43 or r+ = 0.879 is
the new one that corresponds to a zero value of temperature
and specific heat. For the AdS case, the point S = 0.906 or
r+ = 0.537 corresponds to the zeros in mass, temperature
and specific heat.

As we mentioned in the introduction, the main prob-
lem with Weinhold’s and Ruppeiner’s metrics is that they
are not Legendre invariant. Hence we will consider the
geometrothermodynamics to explain the thermodynamics,
since Legendre invariance is preserved in GTD.

For geometrothermodynamic calculations, we will con-
sider 7-dimensional thermodynamic phase space T . This
phase space is constituted by the coordinates Z A =
{M, S, l, ω, T, ι, ϑ}, where S, l, ω are extensive variables
and T, ι, ϑ are their dual intensive variables. Then the
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fundamental Gibbs 1-form defined on T can be written
as

� = d M − T d S − ιdl − ϑdω (28)

The equilibrium phase space E can be defined as a simple
mapping ϕ : {S, l, ω} → {M(S, l, ω), S, l, ω, T (S, l, ω),

ι(S, l, ω), ϑ(S, l, ω). The Quevedo metric is given from (6),

gGTD = (SMS + l Ml + ωMω)

⎡
⎣−MSS 0 0

0 Mll Mlω

0 Mωl Mωω

⎤
⎦ .

The curvature scalar corresponding to the above metric is
found to be

RGTD = D(S, l, ω)

[l2π − 2s]3[4l2πs + 12s2 + l4π(3π − 2ωs)]2[−20l2πs + 28s2 + l4π(3π − 2ωs)]3 , (29)

in which D(S, l, ω) is a complicated expression of less phys-
ical interest. At points S = 0.785 and at S = 0.477 and 2.1
for dS and AdS, respectively, the Legendre invariant scalar
curvature becomes zero or shows infinite discontinuities. The
point S = 0.785 or r+ = 0.5 is the same point where the
phase transition takes place. To get an exact idea regarding
this, we will consider the Fig. 9, which shows the corre-
spondence between the divergence of scalar curvature RGTD

and the specific heat C . It is very interesting to note that
the point S = 0.477 or r+ = 0.386 in AdS case corre-
sponds to the point of inflection in the curves of temperature,
specific heat, and free energy, where the convex nature of
the curve changes to a concave nature or vice versa. Simi-
larly the point S = 2.1 or r+ = 0.817 coincides with the
point of the free energy curve where it becomes zero. So
using geometrothermodynamics and hence by constructing
the Legendre invariant metric, we are able to reproduce the
behavior of thermodynamic potentials and their interactions.
The correspondence of divergence and zeros of the thermody-

0.5 1.0 1.5 2.0 2.5 3.0
S

1. 10 8

5.–

– –

–

–

–

–

10 9

5. 10 9

1. 10 8

1.5 10 8

RGTD

Fig. 9 Plots of scalar curvature vs. entropy for the dS black hole with
l = 1, ω = −2

namic potentials with the divergence of the Legendre invari-
ant scalar curvature leads to the complete understanding of
the Park black hole thermodynamics.

4 Conclusion and discussion

In this paper, we have investigated the thermodynamics as
well as thermodynamic geometry of the Park black hole. We
have considered both the dS and the AdS cases. We have
analyzed the usual thermodynamics of both these cases and
found that there exist many abnormal behaviors like the exis-
tence of an upper mass bound, negative temperature, infinite
discontinuity in temperature, heat capacity, and free energy,

etc. We have incorporated the geometric ideas into the usual
thermodynamics by means of different thermodynamic geo-
metric methods.

We have analyzed first the thermodynamic geometry
based on Weinhold’s metric and Ruppeiner’s metric and the
GTD. We have found that the corresponding thermodynamic
scalar curvature possesses many singularities, and these sin-
gularities are in accordance with the behaviors of mass, tem-
perature, specific heat, and free energy. As we have men-
tioned in this work, these two methods depend entirely on
the choice of the thermodynamic potential to describe the
system. Even though this particular choice gives almost good
results, but the lack of Legendre invariance leads us to con-
sider a much more general geometrothermodynamic method.
The potential independence of the results or in other words
the Legendre invariance is ensured in this metric.

When we use GTD to explain the thermodynamics, we
find that it possesses a true curvature singularity. The singu-
larity corresponds to the points where the mass bound gets
saturated, temperature shows infinite discontinuity and spe-
cific heat also shows infinite discontinuity. Park–dS black
holes undergo a second-order phase transition from a ther-
modynamically unstable state to thermodynamically stable
state while in the AdS case, there exist no such behaviors.
So GTD reproduces the thermodynamics of the Park black
hole, irrespective of the potential choice to explain the sys-
tem. When we consider the GTD metric, it is found to be
finite and smooth at the regions where the black hole is sta-
ble. But when the black hole becomes unstable, this metric
possesses true singularities, and as mentioned above, this cor-
responds to the second-order phase transition shown by the
black hole. So by incorporating the Legendre invariance as
well as differential geometry, GTD is an important method to
well explain the thermodynamics of black holes. Here GTD
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explains the second-order phase transition, the existence of
a negative temperature, the point of inflection, and the upper
mass bound of the Park black hole.
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6. P. Hořava, J. High Energy Phys. 03, 020 (2009)
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