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Abstract We calculate the low-redshift Taylor expansion
for the luminosity distance for an observer at the center of
a spherically symmetric matter inhomogeneity with a non-
vanishing cosmological constant. We then test the accuracy
of the formulas comparing them to the numerical calcula-
tion for different cases for both the luminosity distance and
the radial coordinate. The formulas can be used as a start-
ing point to understand the general non-linear effects of a
local inhomogeneity in the presence of a cosmological con-
stant, without making any special assumption as regards the
inhomogeneity profile.

1 Introduction

Modern cosmological observations such as the luminosity
distance [1–6] and the WMAP measurements [7,8] of the
cosmic microwave background radiation (CMBR) have pro-
vided strong evidence for the presence of dark energy. One
of the main assumptions of the standard cosmological model
used in fitting these observational data is spatial homogeneity
of the Universe. We cannot nevertheless exclude the presence
of a local inhomogeneity around us which could affect our
interpretation of the cosmological data [9–11].

So far most of the efforts in estimating these effects have
consisted in using some ansatz for the profile of the inho-
mogeneity and then calculating numerically the effects on
cosmological observables. Such an approach has the limita-
tion of depending on the particular functional form chosen
to model the local inhomogeneity, and of relying completely
on numerical calculations. In order to provide a more general
study of this effects we approach the problem analytically and

a e-mail: aer@phys.ntu.edu.tw
b e-mail: pisinchen@phys.ntu.edu.tw

we derive a low-redshift formula for the luminosity distance
for an observer at the center of a matter inhomogeneity in
the presence of a cosmological constant modeled by a LTB
solution.

The paper is organized as follows. We first calculate the
low-redshift expansion of the null radial geodesics for a cen-
tral observer and then use it to obtain the luminosity distance.
The calculation is based on using the analytical solution and
the geodesic equation expressed in the same coordinates of
the analytical solution. The formula obtained is then com-
pared to the numerical calculation of the luminosity distance
to test its accuracy. In the appendix we give details of the
derivation and the simplified formulas in the limit in which
the inhomogeneity can be treated perturbatively.

2 LTB solution with a cosmological constant

The LTB solution can be expressed in the form [12–14]

ds2 = −dt2 + (R,r )2dr2

1 + 2E(r)
+ R2d�2, (1)

where R is a function of the time coordinate t and the radial
coordinate r , E(r) is an arbitrary function of r , and R,r =
∂r R(t, r). We get from the Einstein field equations(

Ṙ

R

)2

= 2E(r)

R2 + 2M(r)

R3 + �

3
, (2)

ρ(t, r) = 2M,r

R2 R,r
, (3)

where M(r) is an arbitrary function of r which arises in the
integration of one of the Einstein equations with respect to
time, Ṙ = ∂t R(t, r), and we assume c = 8πG = 1.

The derivation of the analytical solution [15] is based on
the introduction of a new coordinate η = η(t, r) and a vari-
able a by
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(
∂η

∂t

)
r

= r

R
≡ 1

a
, (4)

and new functions by

ρ0(r) ≡ 6M(r)

r3 , k(r) ≡ −2E(r)

r2 . (5)

We then express Eq. (2) in the form

(
∂a

∂η

)2

= −k(r)a2 + ρ0(r)

3
a + �

3
a4, (6)

where a is now a function of η and r , a = a(η, r). The
coordinate η, which can be considered a generalization of
the conformal time in a homogeneous FLRW universe, is
defined implicitly by Eq. (4). The relation between t and η is

t (η, r) =
η∫

0

a(x, r) dx + tb(r), (7)

which can be computed analytically, and which involve ellip-
tic integrals of the third kind [16].

The function tb(r) is a constant of integration, also
called the bang function, since at time t = tb(r) we have
a(tb(r), r) = 0. This corresponds to the possibility that the
big bang can happen at different times at different positions
from the center in a LTB space. Its gradient is related to the
decaying modes of an early universe density perturbation,
and which CMB observations strongly constrain to be small.
In the rest of this paper we will consider a homogeneous big
bang, i.e. we will have

tb(r) = 0, (8)

which in terms of early universe cosmological perturbations
corresponds to growing modes only. The solution is given by

a(η, r) = ρ0(r)

3φ
( η

2 ; g2(r), g3(r)
) + k(r)

, (9)

where φ(x; g2, g3) is the Weierstrass elliptic function, which
satisfies the differential equation

(
dφ

dx

)2

= 4φ3 − g2φ − g3, (10)

and

g2 = 4

3
k(r)2, g3 = 4

27

(
2k(r)3 − �ρ0(r)2

)
. (11)

In this paper we will choose the so called FLRW gauge,
i.e. the coordinate system in which ρ0(r) is constant. It is
convenient to write the solution in terms of dimensionless
quantities [17]:

k(r) = (a0 H0)
2 K (r), (12)

η = T (a0 H0)
−1, (13)

ρ0(r) = 3�0
M (r)a3

0 H2
0 , (14)

� = 3�� H2
0 , (15)

a(η, r) = a(T (a0 H0)
−1, r) = ã(T, r), (16)

to obtain

ã(T, r) = 3a0�
0
M (r)

K (r) + 12φ̃(T, g2(r), g3(r))
, (17)

g2(r) = K (r)2

12
, (18)

g3(r) = 1

432
(2K (r)3 − 27��(�0

M (r))2). (19)

We relate the solution expressed in the two different forms
by multiplying every term by (a0 H0)

2 and using the original
dimensionful quantities η, k(r), ρ0(r):

a(η, r) = ρ0(r)

k(r) + 12φ(η, g2(r), g3(r))
= ã(T, r), (20)

φ(η, r) = φ̃(η(a0 H0), r)(a0 H0)
2 = φ̃(T, r)(a0 H0)

2. (21)

In this form H0 is an arbitrary scale which we set equal to
the observed value, which will also coincide with the HLTB

0
by appropriately setting the value of T0 as explained in more
detail in [17]. Without any loss of generality we can choose
a coordinate system in which ρ0(r) = const., implying that
�0

M (r) = const., which we will simply denote as �M in the
rest of the paper.

3 Geodesic equations and luminosity distance

We will solve [18] the null geodesic equation written in terms
of the coordinates (η, r). We then perform a local expansion
of the solution around z = 0 corresponding to the point
(t0, 0), or equivalently (η0, 0), where t0 = t (η0, 0).

The luminosity distance for an observer located at the
center of a LTB space-time is given by

DL(z)=(1+z)2 R(t (z), r(z))=(1 + z)2r(z)a(η(z), r(z)),

(22)

where (t (z), r(z)) or ((η(z), r(z)) is the solution of the null
radial geodesic equations as a function of z. The equation for
geodesics can easily be obtained in the coordinates (t, r),

dt

dr
= − R,r (t, r)√

1 + 2E(r)
, (23)

where t = T (r) is the time coordinate along the light-like
radial geodesic as a function of the coordinate r . Using the
definition of the redshift and by following the evolution of a
short time interval along the null geodesic T (r), from Eq. (23)
we get [19]
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dr

dz
=

√
1 + 2E(r(z))

(1 + z)Ṙ,r [r(z), t (z)] ,
dt

dz
= − R,r [r(z), t (z)]

(1 + z)Ṙ,r [r(z), t (z)] . (24)

We now [18] express the above geodesics equations in the
coordinates (η, r):

dη

dz
= −∂r t (η, r) + F(η, r)

(1 + z)∂η F(η, r)
≡ p(η, r), (25)

dr

dz
= a(η, r)

(1 + z)∂η F(η, r)
≡ q(η, r), (26)

where

F(η, r) ≡ R,r√
1 + 2E(r)

= 1√
1 − k(r)r2

[∂r (a(η, r)r) − a−1∂η(a(η, r)r) ∂r t (η, r)]. (27)

where the functions p, q, F have explicit analytical forms,
making them particularly suitable to derive analytical results.

4 Formula for the luminosity distance

In order to obtain the redshift expansion of the luminosity
distance we need to expand the relevant functions:

k(r) = (a0 H0)
2 K (r) = K0 + K1r + K2r2 + · · · . (28)

We will use Eq. (7) to obtain the expansion for t (η, r) from
the exact solution for a(η, r).

After integration we obtain

t (η, r) =
η0∫

0

a(x, r) dx + a(η0, r)(η − η0)

+1

2
a′(η0, r)(η − η0)

2 + 1

6
a′′(η0, r)(η − η0)

3 + · · · .

Using the expression above we obtain the expansion of
t (η, r) directly from the expansion of a(η, r), except for
the first term which involves the integral of an elliptic func-
tion. The expansion with respect to the radial coordinate r is
straightforward and we will not report here all the interme-
diate results but only the final expression for the solution of
the geodesics equations. In this paper we provide the first

derivation of the expansion of t (η, r), while in previous work
the coefficients were not evaluated explicitly in terms of Ki .
As a consequence the formulas we obtain only depend on
Ki , and they do not require any addition calculation.

We now find a local Taylor expansion in redshift for the
geodesics equations [9], and we then calculate the luminosity
distance. The general expression is rather cumbersome, and
is given in the appendix. Here we will report only the result
assuming K0 = 0, which still shows the general nature of
the effect. From a physical point of view fixing K0 does not
affect the value of H0, but it does affect the age of the Uni-
verse as shown in [17]. Yet, using the freedom in the choice

of the bang function, it is possible to obtain any age, by appro-
priately fixing it to a constant value tb(r) = t0, while since
t ′b(r) = 0 there would not be any problem related with the
compatibility with early universe perturbations which should
not contain decaying modes.

We will expand the solution of the geodesic equations
according to

r(z) = r1z + r2z2 + · · · , (29)

η(z) = η1z + η2z2 + · · · , (30)

K (z) = K1z + K2z2 + · · · . (31)

After substituting in the geodesics equation we can map the
solution of the system of differential equations into a sys-
tem of algebraic equations for the coefficients of the above
expansions. The general expression is rather long and com-
plicated; therefore, here we will report the much simpler case
when K0 = 0, while in the appendix we give more general
formulas. The motivation for considering the K0 case is to
focus on the effects of the inhomogeneities which are cap-
tured by K1, K2, while K0 corresponds to the homogeneous
component of the curvature function, which in the absence of
inhomogeneities is simply the curvature of a FLRW model,
and as such it is not associated to any physical effect not
already known from standard cosmology.

For the geodesics we get

η1 = − K1(T0 − 1)T0 + 3�M

3a0 H0�M
, (32)

η2 = 1

36a0 H0���2
M )

[
3���M (9�2

M−4K2(−1+T0)T0) + 3K1���M (−4 + (4 − 9�M )T0

+(−4 + 9�M )T 2
0 ) + K 2

1 T0(2��(2 + (−4 + 3�M )T0 − 6(−1 + �M )T 2
0 + 3(−1 + �M )T 3

0 )

− 4(−1+T0)W Z+�M (−4+T0 + 3T0W Z))
]
, (33)
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r1 = 1

a0 H0
, (34)

r2 = − 1

12a0 H0�M

[
(9�2

M + K1(−4 + (4 − 6�M )T0 + (−4 + 6�M )T 2
0 )

]
, (35)

r3 = K 2
1

72a0 H0���2
M

[
2��(6(3�2

M − 4�M + 1)T 4
0 − 12(3�2

M − 4�M + 1)T 3
0 +3(6�2

M−13�M + 4)T 2
0

+ 2(9�M − 4)T0 + 4) + 3�2
M T0(3T0ζ0 + T0 − 4) − 2�M (9T 2

0 ζ0 + T 2
0 − 6T0ζ0 − 4T0

+ 6ζ0 − 2) + 8(T 2
0 − T0 + 1)ζ0) + 12K1���2

M ((9�M − 8)T 2
0 + (8 − 9�M )T0 − 5)

+ 3���M (K2((8 − 12�M )T 2
0 +4(3�M − 2)T0 + 8) + 3(9�M − 4)�2

M ))
]
, (36)

where

T0(a0 H0)
−1 = η0, (37)

ζ0 = ζ(η0, g2(0), g3(0)), (38)

and ζ is the Weierstrass zeta function satisfying the equation

dζ(z, g2(r), g3(r))

dz
= −φ(z, g2(r), g3(r)). (39)

The presence of this last function in the formulas obtained
above is due to the fact that the function t (η, r), which enters
the geodesics equation is the integral of a(η, r) and depends
on φ(z), has an integral that will depend on ζ(z). In the case of
a LTB solution without a cosmological constant this integral
can be performed without the introduction of a new function,
while in this case it requires the introduction of ζ0 in the final
formula.

The procedure to reduce the analytical formula to this form
is rather complicated since it involves the need to express
wherever possible all the intermediate expressions in terms
of physically meaningful quantities and to use the proper-
ties of the elliptic functions. We give more details in the
appendix. We see that the effects of inhomogeneities start to

show at first and second order, respectively, for η(z) and r(z).
Contrary to the case of a vanishing cosmological constant,
T0 now appears explicitly in the formula. This is due to the
fact that in a LTB model without cosmological constant it is
possible to express explicitly T0 in terms of K0 and q0, the
central value of the deceleration parameter, while in our case
we have

q0 = − ä(t0, 0)a(t0, 0)

ȧ(t0, 0)2 ,= 3�M

2
− K0 − 1

= −a6
0 H6

0

(
K 3

0 − 54���2
M

) + 9a4
0 H4

0 K 2
0 φ0 + 27a2

0 H2
0 K0φ

2
0 + 27φ3

0

2a6
0 H6

0

(
2K 3

0 − 27���2
M

) + 18a4
0 H4

0 K 2
0 φ0 − 54φ3

0

, (40)

where we have used the relations reported in the appendix to
simplify the expression, and we have

t0 = t (η0, 0), (41)

φ0 = φ(η0, g2(0), g3(0)). (42)

Such a relation implicitly constrains the value of φ0 in terms
of cosmological parameters but it is not very useful to explic-
itly determine T0, since it would involve to solve a cubic equa-
tion first and then to apply the inverse of an elliptic function,
while in the vanishing cosmological constant case there exists
a simple analytical relation because the Weierstrass function
reduces to a trigonometric expression, as shown in [17].

After substituting in the formula for the luminosity dis-
tance and expanding we finally get

D�LTB
L (z) = (1 + z)2r(z)a�LTB(η(z), r(z)) = D�LTB

1 z + D�LTB
2 z2 + D�LTB

3 z3 + · · · (43)

D�LTB
1 = 1

H0
, (44)

D�LTB
2 = − 1

4H0
(−4 + 3�M + 2K1(−1 + T0)T0), (45)
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D�LTB
3 = 1

24H0���M

[
K 2

1 (2��T0((6�M − 5)T 3
0 − 2(6�M − 5)T 2

0 + 6(�M − 1)T0 + 2)

+�M T0(3T0ζ0 + T0 − 4) − 4(T 2
0 ζ0 − T0ζ0 + ζ0 − 1))

+ 4K1���M ((9�M − 8)T 2
0 + (8 − 9�M )T0 − 2)

+ 3���M (−4K2(T0 − 1)T0 + 9�2
M − 10�M )

]
, (46)

where we used the Einstein equation at the center, (η =
η0, r = 0),

1 = �k(0) + �M + �� = −K0 + �M + ��, (47)

�k(r) = − k(r)

H2
0 a2

0

, (48)

�M = ρ0

3H2
0 a3

0

, (49)

�� = �

3H2
0

. (50)

and T0 = η0(a0 H0) is determined numerically by imposing
the conditions [17]

HLTB = ∂t a(t, r)

a(t, r)
= ∂ηa(η, r)

a(η, r)2 = (a0 H0)
ã′(T, r)

a(T, r)2 ,

(51)

a(η0, 0) = a0, (52)

HLTB(η0, 0) = H0. (53)

Finally we observe that all the above formulas reduce to
the well known FLRW form in the homogeneous limit limit,
i.e. when {K1 = K2 = 0}.

5 Testing the accuracy of the formula

In order to verify the accuracy of the formula obtained we
consider the example of an inhomogeneity described by

K (r) = ε(1 + r + r2), (54)

where ε parameterizes the deviation from a homogeneous
cosmological model. We then compute the corresponding
luminosity distance by integrating numerically the Einstein
equations and the geodesic equations, and we compare the
numerical results to the redshift expansion for different val-
ues of ε (Fig. 1).

As can be seen in the figure the formula is quite accurate
up to a redshift of 0.2, where according to the value of ε the
percentual error is approximately between 0.3 and 0.7 %. The
one provided here is only an example to give a preliminary
test of the accuracy of the formula, and as such it does not
have any direct connection with the actual size of an inho-
mogeneity which may be surrounding us. We will investigate
more extensively in a separate upcoming paper the range of
applicability of the formula in relation with observational

0.05 0.10 0.15 0.20
z

0.2

0.4

0.6

0.8

z

Fig. 1 The percentual error � = 100
DLTB

num −DLTB
Taylor

DLTB
num

between the numeri-

cally computed DLTB
Num(z) and the Taylor third order expansion DLTB

Taylor(z)
is plotted as a function of the redshift for the LTB solution correspond-
ing to K (r) = ε(1 + r + r2). The solid line corresponds to ε = 0.075,
the dot-dashed line to ε = 0.05 and the dashed line to ε = 0.1

data fitting. We also report the percentual error of the formula
for the radial coordinate r(z) as a function of the redshift. It
is important to observe that r(z) depends on our choice of
coordinates, which is ρ0(r) = const., but it is still useful to
check its accuracy since it is used in the derivation of the for-
mula for the luminosity distance. This latter one is a physical
observable and so its relation with the redshift is independent
of our coordinate choice, except for the fact that the coeffi-
cients of the Taylor expansion of K (r) would change if we
would choose another coordinate system (Fig. 2).

6 Conclusion

We have derived the analytical low-redshift expansion of the
luminosity distance for a central observer at the center of a
spherically symmetric matter inhomogeneity in the presence
of a cosmological constant. We have first solved the null
radial geodesic equation and calculated the local redshift for
r(z) and η(z), and we have then used these to calculate the
expansion of the luminosity distance. The formulas obtained
take a simpler form in the case in which K0 = 0, while in
general they are rather long and complicated, but they can
be reduced to a more tractable form in the limit in which the
deviation from homogeneity can be treated perturbatively.

The formulas we have derived can be used to understand
the physical effects of local inhomogeneities in the presence
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0.05 0.10 0.15 0.20
z

0.1

0.2

0.3

0.4

0.5

z

Fig. 2 The percentual error � = 100
rLTB

num −rLTB
Taylor

rLTB
num

between the numeri-

cally computed rLTB
Num(z) and the Taylor third order expansion rLTB

Taylor(z)
is plotted as a function of the redshift for the LTB solution correspond-
ing to K (r) = ε(1 + r + r2). The solid line corresponds to ε = 0.075,
the dot-dashed line to ε = 0.05, and the dashed line to ε = 0.1

of a cosmological constant. It has the advantage, contrary to
previous numerical studies, of not depending on any func-
tional ansatz for the profile of the local inhomogeneity. This
makes it particularly useful to study possible low-redshift
inhomogeneities in a model independent way in the regime
in which perturbation theory cannot be applied.
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Appendix A: Derivation of the analytical formulas

In order to obtain the formula for DL(z) in the form in which
we reported it in the previous sections we need to apply sev-
eral simplifying procedures.

The ideas is to express everything in terms of physical
quantities, so we start from the definition of a0 and H0:

a0 = a(η0, 0) = ρ0

k0 + 3φ0
, (55)

H0 = ȧ(t0, 0)

a(t0, 0)
= −3φ′

0

2ρ0
, (56)

where

φ0 = φ(η0, g2(0), g3(0)), (57)

φ′
0 = ∂φ(η, g2(0), g3(0))

∂η
|η=η0 , (58)

and the derivatives with respect to the time variable t are
obtained in terms of derivatives with respect to η using
Eq. (4). After inverting the above relations we get

φ0 = φ(η0, g2(0), g3(0)) = ρ0 − a0k0

3a0
, (59)

φ′
0 = φ(η, g2(0), g3(0))

dη

∣∣∣∣
η=η0

= −2H0ρ0

3
. (60)

We then substitute the above expressions everywhere where
{φ0, φ

′
0} appear, which is the reason why they are not present

in the formulas obtained.
Another useful relation to simplify intermediate results is

the one which can be obtained from the differential equation
defining the Weierstrass elliptic function:

φ̃′
0 =

√
− K 3

0

216
− K 2

0 φ̃0

12
+ ��(�0

M )2

16
+ 4φ̃3

0 . (61)

It can also be shown that the above relation is equivalent to
the Einstein equation at the center, (η0, 0),

1 = −K0 + �� + �M , (62)

since solving the Einstein’s equation is reduced to solving
the Weierstrass equation by construction [17].

Appendix B: General formulas and perturbative limit

In this appendix we give the formulas when K0 is not zero.
For η(z) and r(z) we have

r2 = 1

1944a0 H0���2
M (4K 3

0 − 27���2
M )

[
−128K 6

0 K1 (T0 − 1)T 2
0 + 64K 5

0 K1T0((3�M − 2)T 2
0

+ (2 − 3�M )T0 − 2) − 972K 4
0 ���2

M (K1T 3
0 − 4) + 108K 3

0 ���2
M (27�M (K1T 3

0 − 2)

− K1T0(11T 2
0 + T0(54ζ0 + 34) − 18)) − 27K 2

0 K1���2
M ((81�2

M − 66�M + 8)T 3
0

− 8T 2
0 (�M (81ζ0 + 39) − 81ζ0 − 17) + 4T0(135�M − 108ζ0 − 34)

+144(3ζ0 + 1)) − 1458K0���2
M (K1(2�M (T 2

0 (6�� − 9ζ0 − 1)

+T0(−6�� + 6ζ0 + 4) − 6ζ0 + 2) + 3�2
M T0(3T0ζ0 + T0 − 4) + 8(T 2

0 − T0 + 1)ζ0) + 18���2
M )

+ 4374�2
��3

M (K1((6�M − 4)T 2
0 + (4 − 6�M )T0 − 4) + 9�2

M

]
, (63)
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η1 = 1

972a0 H0���2
M (4K 3

0 − 27���2
M )

[
64K 5

0 K1(T0 − 1)T 2
0 + 486K 3

0 ���2
M (K1T 3

0 − 8) (64)

− 27K 2
0 K1���2

M T0((27�M − 4)T 2
0 − 4T0(27ζ0 + 17) + 72)

− 1458K0 K1���2
M T0(�M (3T0ζ0 + T0 − 4) − 4(T0 − 1)ζ0) + 8748�2

��3
M (K1(T0 − 1)T0 + 3�M )

]
.

After substituting in the formula for the luminosity distance
we get

D�LTB
2 = 1

972a0 H0���2
M (4K 3

0 − 27���2
M )

[
64K 5

0 K1(T0 − 1)T 2
0 + 486K 3

0 ���2
M (K1T 3

0 − 8)

− 27K 2
0 K1���2

M T0((27�M − 4)T 2
0 − 4T0(27ζ0 + 17) + 72)

− 1458K0 K1���2
M T0(�M (3T0ζ0 + T0 − 4) − 4(T0 − 1)ζ0) + 8748�2

��3
M (K1(T0 − 1)T0 + 3�M )] . (65)

We do not report higher order terms because the expressions
are extremely long and would not add any physical insight,
but we consider the case in which we perturbatively treat the
function K (r) ∝ ε, where ε stands for a small deviation from
a flat �CDM model.

In this perturbative limit for η(z) and r(z) we get

η1 = − 1

a0 H0
+ (K1T0 − K1T 2

0 )ε

3a0 H0�M
+ O[ε]2, (66)

η2 = 3�M

4a0 H0
+ 1

12a0 H0�M

[
− 4K1 − 6K0�M + 4K1T0 + 4K2T0 − 9K1�M T0 − 4K1T 2

0

−4K2T 2
0 + 9K1�M T 2

0 )ε
]

+ O[ε]2, (67)

r2 = − 3�M

4(a0 H0)
+ (2K1 + 3K0�M − 2K1T0 + 3K1�M T0 + 2K1T 2

0 − 3K1�M T 2
0 )ε

6a0 H0�M
+ O[ε]2, (68)

r3 = −4�M + 9�2
M

8a0 H0
+ 1

6a0 H0�M
[(2K2 − 5K1�M − 9K0�

2
M − 2K2T0 + 8K1�M T0 + 3K2�M T0

−9K1�
2
M T0 + 2K2T 2

0 − 8K1�M T 2
0 −3K2�M T 2

0 + 9K1�
2
M T 2

0 )ε
]

+ O[ε]2. (69)

Finally substituting in DL(z) the above expansion we obtain

D�LTB
2 =

(
1

H0
− 3�M

4H0

)
+ (K0 + K1T0 − K1T 2

0 )ε

2H0
+ O[ε]2, (70)

D�LTB
3 = −10�M + 9�2

M

8H0
+ 1

6H0

[
3K0 − 2K1 − 9K0�M + 8K1T0 + 3K2T0 − 9K1�M T0 − 8K1T 2

0

−3K2T 2
0 + 9K1�M T 2

0 )ε
]

+ O[ε]2. (71)

As can be seen ζ0 is not present in the first order perturbative
corrections to a homogeneous universe.
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