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Abstract The asymmetry in the angular distribution of
Drell–Yan dilepton pairs in collisions where just one nucleon
is transversely polarised has been examined in the literature
with a variety of results, differing mainly by factors of 2.
We re-evaluate the asymmetry via twist-3 contributions in
collinear factorisation. In order to allow complete and in-
depth comparison with existing calculations, we supply all
calculational details.

1 Introduction

In this paper we focus our attention on the study of the cross-
section for Drell–Yan [1] processes in which an unpolarised
proton and a transversely polarised antiproton annihilate to
produce a dilepton pair. In particular, we shall calculate the
single-spin asymmetry (SSA) defined as

AN =
dσ(ST )

dσ�dQ2 − dσ(−ST )

d�dQ2

dσ(ST )

d�dQ2 + dσ(−ST )

d�dQ2

, (1)

where ST is the polarisation of the antiproton in the plane
orthogonal to its motion. The study of this asymmetry is of
particular interest for a variety of reasons. Firstly, a number
of experiments propose to measure it. Secondly, given the
small number of quarks involved in such processes, SSAs
are ideal observables to further test factorisation mecha-
nisms in pQCD. Lastly, SSAs are related to particular par-
ton distribution functions that describe the inner structure of
hadrons.

The motivation to review this specific topic is the diversity
of the results found in literature. The first calculation was
performed in [2], where the authors obtained the following
result:
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AN = − 1

Q

sin 2θ sin φS

1 + cos2 θ

×
∑

q e2
q

∫
dx

[
T q

F (x, x)− x d
dx T q

F (x, x)
]

f q̄(x ′)
∑

q e2
q

∫
dx f q(x) f q̄(x ′)

,

(2)

where f q is the twist-two (unpolarised) distribution for a
quark of flavour q, the momentum fraction of the antiquark
is defined by x ′ = Q2/(xs), s = (P + P ′)2 is the CM frame
energy squared and Q2 the momentum squared of the vir-
tual photon. The correlator TF (x, x) is a twist-three quark–
quark–gluon spin-dependent matrix element (given e.g. in
[2]), which will be described in detail later.

The derivative term in the numerator of (2) was later
doubted and the result given in [3,4] is

AN = − 1

Q

sin 2θ sin φS

1 + cos2 θ

∑
q e2

q

∫
dx T q

F (x, x) f q̄(x ′)
∑

q e2
q

∫
dx f q(x) f q̄(x ′)

. (3)

The question of the derivative was further addressed in [5]
without clear conclusions, while in [6] its absence was argued
to be owing to the absence of so-called double soft-gluon
poles in this calculation.

The result (3) was obtained by expanding the hadronic ten-
sor in terms of twist-3 correlators depending on the hadron’s
transverse spin. A parallel approach may be found in [7],
in which factorisation is in terms of transverse-momentum
dependent quark–quark correlators. The final result is, how-
ever, in contrast with the previous two results.

A further attempt was made in [8], in which result (3) was
found to be multiplied by a factor 2. The SSA was recently
recalculated in [9], where the authors noted that transverse-
momentum dependence must be taken into account not only
in the hadronic tensor, but also in the leptonic tensor; indeed,
pT flows from the hadronic to the leptonic part via the virtual
photon. The result found there was half of (3). In [10] the cal-
culation was performed using partonic states and the result
obtained coincides with that of [9]. The motivation given
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there for the difference with respect to the earlier papers
appears dissimilar in form although the interplay between
the transverse-momentum dependence in both the hadronic
and the leptonic tensors is central.

In order to attempt to clarify the situation, we have
repeated the calculation taking into account the observations
of [9]; we obtain, however, a result which is two times (3). In
this paper we shall define all the partonic distribution func-
tions and quantities used and show all calculational details.

The rest of the paper is organised as follows. In the next
section we provide the definitions of the kinematical vari-
ables used and we define the quark–quark and quark–quark–
gluon correlators with respect to the associated parton dis-
tributions. In Sect. 3 we describe the Collins–Soper (CS)
reference frame [11], which we use in the calculation, and
the transverse-spin vector in these coordinates. We then focus
our attention on the question of gauge invariance of the cor-
relators and suppression of gauge-link operators. In the final
two sections we examine the collinear expansion and show
all calculational details involved in reaching the final result.

2 Notation and definitions

In this section we review the notation and definitions used in
this paper. Let us start by noting that in the ultrarelativistic
regime the momentum carried by a quark is essentially in the
hadron direction, or rather, in the beam direction. Therefore,
given a pair of vectors:

p̂μ = 1√
2
(1, 0, 0, 1) and n̂μ = 1√

2
(1, 0, 0,−1), (4)

taking the third component along the beam direction, we may
define

pμ = � p̂μ and nμ = �−1 n̂μ, (5)

and their light-cone projections

p+ = 1√
2
(p0 + p3) = �,

p− = 1√
2
(p0 − p3) = 0,

n+ = 1√
2
(n0 + n3) = 0,

n− = 1√
2
(n0 − n3) = �−1.

(6)

The specific value of � will determine the chosen hadron
reference frame.

Consequently, a generic vector may be written as Pμ =
(p+, p−,PT ), with PT = (p1, p2) while a generic scalar
product is P·P ′ = P+ P ′−+ P− P ′+−PT ·P′

T . The power of

this notation lies in the fact that, by choosing the beam direc-
tion as p+, as in a light-cone coordinate system, this compo-
nent will dominate in scalar products and we may easily iso-
late effects induced by transverse spin and momentum. With
these definitions, we may write the hadron momentum as

Pμ = pμ + 1

2
M2 nμ, (7)

This relation is true not only in the hadron rest frame (� =
M/

√
2, with M the hadron mass), but also in the infinite-

momentum frame (� = P+ → ∞).
In the second part of this section we define one of the

fundamental objects used in the study of hadronic scattering
processes: the quark–quark correlator. Let us start by noting
that the transition matrices that describe the passage from
an hadronic state with definite momentum and spin |P, S〉
to a generic state |X〉 are of the form 〈X |ψi |P, S〉. As a
consequence, to obtain a transition probability, we need to
multiply by the complex conjugate and sum over all interme-
diate states. It is therefore natural to define the quark–quark
correlator

φi j (P, S, p) =
∫

d4z

(2π)4
eip·z〈P, S|ψ̄i (0)ψ j (z)|P, S〉. (8)

Correlators written in this form are not measurable in phys-
ical processes and our interest will therefore be to connect
this object with observables such as the hadron momentum
and spin.

Firstly, we note that the correlator is a 4×4 Dirac matrix,
a Lorentz scalar and depends on three independent physical
quantities [P, S, p], where P is the hadron momentum, S
its spin and p the quark momentum. In parallel, there are
only three independent matrices, they are [1, γ μ, γ5]. Let us
now multiply this set of vectors and matrices by each other
respecting the following properties:

• Invariance under parity. Parity changes the signs of
momenta, but not of axial vectors such as spin. As a conse-
quence, helicity, defined as λ = P·S

|P| , flips sign under such
transformations. For parity to be conserved, the following
must be valid:

φ(P, S, p) = γ 0 φ(P̃,−S̃, p̃) γ 0. (9)

• Invariance under charge conjugation and time reversal.
This condition implies that

φ∗(P, S, p) = γ5 Cφ(P̃, S̃, p̃)C† γ5, (10)

where C = iγ 0γ 2 is the charge-conjugation operator. This
is obvious since the transformation does not alter the spa-
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tial part of the spin operator and helicity does not change
sign.

• The correlator must be Hermitian, which implies

φ†(P, S, p) = γ 0φ(P, S, p)γ 0. (11)

• The expansion must be linear in spin. This condition arises
from the fact that Lorentz invariance implies that the
hadronic tensor must be linear in the spinors u(P, S) and
ū(P, S). As a consequence, the tensors constructed with
this requirement are spin independent or linear in spin:

ū(P, S)γ μu(P, S) = 2Pμ (12a)

or

ū(P, S)γ μγ5u(P, S) = 2M Sμ (S2 = −1). (12b)

The set of combinations of vectors based on these require-
ments is as follows:

{/p, /P, /Sγ5, p·Sγ5}. (13)

Note that we need not consider all possible products between
p, P and S, but only those linearly dependent on the spin S.
This is because the coefficients Ai multiplying each structure
in the complete expansion will depend on p·P and p2.

Let us now construct the most general expansion of the
correlator over the basis obtained by multiplying the elements
of the set of vectors and matrices. We must pay attention to
the condition mentioned earlier. The maximum number of
products is limited by the fact that the product of a quantity
with itself does not generate any new Dirac structure. In fact,
we have 12 = 1, /p2 = p21, /P2 = P21, (/Sγ5)

2 = 1 while
(p·Sγ5)

2 is forbidden by the request of linearity in spin. As a
consequence, if r is the number of basic elements multiplying
each other, we obtain

r = 1 : 1, /p, /P, /Sγ5, p·Sγ5; (14a)

r = 2 : /p /P, /p/Sγ5, p·S/pγ5, /P /Sγ5, p·S /Pγ5; (14b)

r = 3 : /p /P /Sγ5, p·S/p /Pγ5. (14c)

The method produces 12 independent structures; not all,
however, fulfill the requirements of time-reversal invariance
and hermiticity. To see which satisfy these conditions it is
convenient to see which of these terms include a double or
triple slash. To do this we use the relations

/a/b = −iσμνaμbν + a·b (15a)

and

γ 5/a/b/c = iεσμνργσaμbνcρ

+ a·b γ 5/c − b·c γ 5/a + c·a γ 5/b, (15b)

in which the only interesting terms are the first as the oth-
ers have already been taken into account (recall that a·b is
proportional to 1).

We now have the correlator expansion:

φ(P, S, p) = A1 M1 + A2 /P + A3/p + A6 M /Sγ5

+ A7

M
p·S /Pγ5 + A8

M
p·S /pγ5 + i A9σ

μνγ5SμPν

+ i A10σ
μνγ5Sμ pν + i

A11

M2 σ
μνγ5 p·S pμPν . (16)

In parallel, the correlator is a matrix in Dirac space; it may
therefore be expanded over an orthonormal basis of γ matri-
ces to obtain

φ(P, S, p) = 1

2

[
S 1 + i Pγ 5 + Vμγ

μ

+ Aμγ
5γ μ + i

2
Tμνσ

μν
]
, (17)

where the letters S, P , V , A and T indicate the types of cur-
rents: scalar, pseudoscalar, vector, axial and tensor, respec-
tively. Comparing expressions (16) and (17), we obtain

S = 1

2
Tr(φ) ≡ A1 M, (18a)

Vμ = 1

2
Tr(γμφ) ≡ A2 Pμ + A3 pμ, (18b)

Aμ = 1

2
Tr(γμγ5φ)

≡ A6 M Sμ + A7

M
p·S Pμ + A8

M
p·S pμ, (18c)

Tμν = −1

2
i Tr(σμνγ5φ)

≡ i A9 P[μSν ] + i A10 p[μSν ] + i
A11

M2 p·S P[μpν ], (18d)

where [ · · · ] around indices indicates antisymmetrisation, i.e.
P[μSν ] ≡ PμSν − PνSμ.

We may simplify these expressions, noting in this case that
Pμ ∼ P+, pμ = x Pμ, M Sμ = λPμ + M SμT and we may
neglect terms in M2/P+. As a consequence, neglecting the
quark’s transverse momentum, we can rewrite these equa-
tions in terms of the proton momentum and transverse spin
only. Let us define new coefficients Di depending only on
the quark momentum fraction x . Keeping only the dominant
terms, we redefine
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Vμ = D1 Pμ, (19a)

Aμ = λD2 Pμ, (19b)

Tμν = D3 P[μST ν]. (19c)

As a consequence, it is possible to rewrite the correlator in
terms of the structure functions f (x), � f (x) and �T f (x).
We obtain

φ(x) ≡
∫

d4 p

(2π)4
δ
( p

P+ − x
)
φ(P, S, p)

= 1

2

[
f (x) /P +� f (x)λγ 5 /P +�T f (x)γ 5/ST /P

]
.

(20)

Thus far we have worked at the twist-two level. Alternatively,
following [12], it is possible to project the Dirac spinors
onto ‘good’ and ‘bad’ components and show that they are
connected by gluonic fields whenever the quark involved in
the process is off-shell. In particular, defining the Hermitian
projectors P± = 1

2

[
1 ± γ 3γ 0

]
, the ‘good’ components are

ψ+ = P+ψ and the ‘bad’ are ψ− = P−ψ . The following
relation is also true:

ψ− = 1

4i

∫

dξ ε(x3 − ξ)
[
(i∂ j − eA j )γ

j + m
]
γ 0ψ+

≡ 1

4i

∫

dξ ε(x3 − ξ) /DT γ
0ψ+. (21)

We observe that the relation between ‘+’ and ‘−’ compo-
nents depends on a term containing the covariant derivative,
and thus on the Dirac equation. Therefore, if the quark is
on-shell, it is possible to rewrite ψ− in terms of ψ+ and the
quark mass, but if the quark is off-shell there are no rela-
tions between ‘good’ and ‘bad’ components and the addition
of new degrees of freedom that are not eliminable by a dif-
ferent choice of gauge is necessary. These are given by the
interaction of the transverse gluon field with the quark.

In order to isolate these dependences and create general
twist-3 distributions, it is necessary to insert the n compo-
nents into the Sudakov decomposition made earlier. Using
relation (7) together with the expansion

Sμ = S·n pμ + S·p nμ + ST μ (22)

in (20), with convenient redefinitions, we obtain the follow-
ing set of twist-2 to -4 distribution functions [13]:1

1

2

∫
dλ

2π
eiλx 〈P, S|ψ̄(0)γμψ(λn)|P, S〉

≡ f (x) pμ + f4(x)M
2nμ, (23a)

1 Note that in [13] the normalisation S2 = −M2 is adopted.

1

2

∫
dλ

2π
eiλx 〈P, S|ψ̄(0)γμγ5ψ(λn)|P, S〉

≡ g1(x)M S·n pμ + gT (x)M STμ + g3(x)M
3S·n nμ,

(23b)

1

2

∫
dλ

2π
eiλx 〈P, S|ψ̄(0)iσμνγ5ψ(λn)|P, S〉

≡ h1(x)
[
STμ pν − ST ν pμ

]

+ hL(x)M
2 [pμnν − pνnμ

]
S·n

+ h3(x)M
2 [STμnν − ST νnμ

]
. (23c)

Wishing now to also display the dependence of the twist-3
correlators on the gluonic fields, we expand over independent
distribution functions. Let us start by redefining the quark–
quark–gluon correlation matrix

φαDi j (x, y) =
∫

dλ

2π

dη

2π
eiλx+iη(y−x)

× 〈P, S|ψ̄ j (0)i Dα(ηn)ψi (λn)|P, S〉 (24)

In general this matrix will be associated with the Born dia-
gram shown in Fig. 1.

In this case x and y represent the momentum fractions
carried by the quarks. More precisely, x is the momentum
fraction carried by the quark on the left of the diagram and y
on the right. Consequently, x − y is the momentum fraction
carried by the gluon. From now on an integral is implied over
the quark and gluon momenta with the restrictions δ(x P − p)
and δ(y P − p′), where p and p′ are the quark momenta.

We observe that this matrix contains a covariant deriva-
tive and thus separates into two parts. The first contains the
operator ψ̄∂αψ and the second the gluonic field ψ̄ Aαψ . As
already seen for the twist-two distribution, in order to obtain a
twist-τ distribution it is only necessary to consider τ partons
with dynamically independent polarisations. If this indepen-
dence does not hold, new higher-order contributions will be
generated. In order to respect this independence therefore,
we project out the ‘+’ components from such a correlation
matrix and, for the gauge choice A+ = 0, only transverse
gluon polarisations survive.

To perform this projection, we insert /n and restrict the
index α to be transverse. Consequently, we may define the

Fig. 1 The Born diagram for quark–quark–gluon correlation matrix
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distributions G(x, y) and G̃(x, y) for the vector and axial-
vector projections of φαDi j :

1

2

∫
dλ

2π

dη

2π
eiλx+iη(y−x)

× 〈P, S|ψ̄(0)i Dα
T (ηn)/nψ(λn)|P, S〉

≡ iεαβT Sβ G(x, y)+ · · · (25a)

and

1

2

∫
dλ

2π

dη

2π
eiλx+iη(y−x)

× 〈P, S|ψ̄(0)i Dα
T (ηn)/nγ5ψ(λn)|P, S〉

≡ SαT G̃(x, y)+ · · · , (25b)

where εαβT ≡ ε+−αβ and the dots denote higher-twist con-
tributions. Note with our normalisation G(x, y) and G̃(x, y)
have dimensions of a mass.

The origin of these two possible choices of expansion
over momentum and spin vectors lies in the possible gluon
polarisation degrees of freedom. In fact, in the first definition
the gluon polarisation is orthogonal to the hadron spin and
momentum, in the second it is aligned with the spin. Requir-
ing hermiticity of the operators, we find that G(x, y) is anti-
symmetric under the interchange x ↔ y, whereas G̃(x, y) is
symmetric. Note moreover that invariance under time rever-
sal requires both to be real. Analogously, considering also
the tensor interaction, we may define

1

2

∫
dλ

2π

dη

2π
eiλx+iη(y−x)

× 〈P, S|ψ̄(0)σμνγ5i Dα
T (ηn)/nψ(λn)|P, S〉

≡ [gμα pν + gνα pμ]S·n H(x, y)

+ iεμναβE(x, y) pβ/M + · · · . (25c)

The relations between definitions (25a–c) and (20) have
been studied extensively in the literature, in particular in [3].
We have the following:

MgT (x) = 1

2x

∫

dy [G̃(x, y)+ G̃(y, x)

+ G(x, y)− G(y, x)], (26a)

MhL(x) = 1

x

∫

dy [H(x, y)+ H(y, x)] (26b)

and

Me(x) = 1

x

∫

dy [E(x, y)− E(y, x)]. (26c)

3 Reference frame and transverse momentum

In this section we focus our attention on the choice of the ref-
erence frame. As the polarisation is defined in the LAB frame
transversely to the beam direction, it is natural to choose the
Collins–Soper reference frame. With this choice we can iso-
late transverse-momentum effects, not only in the hadronic
tensor, but also in the leptonic tensor. This frame is defined
by the following:

Tμ ≡ qμ
√

Q2
,

Zμ ≡ 2
√

Q2 + Q2
T

[
qP2 P̃μ1 − qP1 P̃μ2

]
,

Xμ ≡ − Q

QT

2
√

Q2 + Q2
T

[
qP2 P̃μ1 + qP1 P̃μ2

]
,

Yμ ≡ εμνρσ Tν ZρXσ ,

(27)

where

˜Pμ1,2 ≡ 1√
s

[

Pμ1,2 − q·P1,2

q2 qμ
]

≡ 1√
s

[
Pμ1,2 − ξqμ

]

(28a)

and

qP1,2 = q·P1,2√
s
. (28b)

Let us give a geometric interpretation of this frame: ξ rep-
resents the photon momentum fraction in the beam direction.
Thus, subtracting ξqμ from the proton momentum, we find
all the dependence on the transverse momentum of the struck
quark. As for the basis vectors, Z indicates the direction of
the beam in the absence of transverse momentum, X the
transverse-momentum direction, T the photon direction and
Y , again transverse, completes the set of orthonormal vec-
tors. A simplified representation of this frame is displayed in
Fig. 2.

In this frame we can also define the angles we shall use
in the calculation of the SSA. In particular, θ represents the
angle between the Z axis and the direction of the outgoing
leptons, φ1 is the angle between the lepton plane and the
transverse-spin direction, and φ is the angle between the lep-
ton plane and the X axis.

As we have seen, the polarisation of the hadron is defined
in the LAB frame, we thus now wish to show how the spin
vector transforms on moving from the LAB to the CS frame.
Let us start by noting that this transformation is possible
with two Lorentz boosts in succession. The first is in the
beam direction in order to set Q3 to zero, the second is in the
QT direction to cancel this component too and leave only
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Fig. 2 A schematic representation of the Collins–Soper reference
frame

the temporal component Q. After this transformation it is
clear that Q2 corresponds to the mass of the dilepton pair.
We represent the spin vector before the boost as

SμT = (0, Sx , Sy, 0)

= (0, |S| cos(φ − φS), |S| sin(φ − φS), 0). (29)

Applying the two boosts we obtain

SμCS
T =

⎛

⎜
⎜
⎜
⎝

|QT |
Q |S| cos(φ − φS)

√
Q2+Q2

T

Q |S| cos(φ − φS)

|S| sin(φ − φS)0

⎞

⎟
⎟
⎟
⎠
, (30)

where we may, however, neglect terms in Q2
T . We thus see

that in this frame the spin vector acquires a temporal compo-
nent. However, it is easy to show that, after contraction with
the leptonic tensor, this has no physical consequence.

In the final part of this section we illustrate the expansion
of the leptonic tensor over the CS basis vectors. Since T lies
along the photon direction, each of the two leptons carries
away half the photon momentum. The canonical decompo-
sition is therefore valid:

lμ± = 1

2
qμ ± 1

2
Q
[
sin θ cosφ X̂μ

+ sin θ sin φŶμ + cos θ Ẑμ
]
, (31)

Using Lμν = l{μ+ lν}− − 1
2 Q2gμν (with l{μ+ lν}− ≡ lμ+lν− + lμ−lν+)

and defining Tμ ≡ qμ/
√

Q2, we obtain

Lμν = Q2

2
[TμT ν − gμν]

− Q2

2

[
sin2 θ cos2 φ X̂μ X̂ν + sin2 θ sin2 φŶμŶ ν

+ cos2 θ Ẑμ Ẑν + 1

2
sin2 θ sin 2φ X̂ {μŶ ν}

+ 1

2
sin 2θ cosφ X̂ {μ Ẑν} + 1

2
sin 2θ sin φŶ {μ Ẑν}

]
.

(32)

We note that this tensor is totally symmetric.

4 Gauge invariance in twist-three correlators

We now analyse the question of gauge invariance. The gauge
choice A+ = 0, is made for two reasons: firstly, examining
expression (8), we note that z is a space-time variable. There-
fore, in order to connect the two different space-time points,
we must insert a gauge-link operator into the correlator in
the following way:

〈P, S|ψ̄i (0) L [0, z] ψ j (z)|P, S〉, (33)

where the gauge link is

L[0, z] = exp

⎡

⎣−ig

z∫

0

dη η·A(η)
⎤

⎦ . (34)

The choice A+ = 0 sets this operator to 1, as the dominant
direction of z is the ‘+’ direction.

Secondly, in this gauge it is simple to transform a corre-
lator of the form

φαA i j (P, S, p)

=
∫

d4 p

(2π)4
eip·z〈P, S|ψ̄i (0)g Aαψ j (z)|P, S〉 (35)

into a gauge-invariant expression. This may be achieved by
noting that

F+α = ∂+ AαT (36)

and thus, after integration by parts, we arrive at

(x − y) φαA(x, y) = −iφαF (x, y), (37)

where φαF is obtained by replacing Aα with F+α in Eq. (35).
Using this simple rule, we may then make the substitutions
G A(x, y) → G F (x, y) and G̃ A(x, y) → G̃ F (x, y), where
G F etc. are defined by the same replacements in (25a) and
(25b).
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Finally, in order to compare clearly with our calculation,
we note that the matrix element TF appearing in the asym-
metry reads

TF (x, y) =
∫

dλ

2π

dη

2π
eiλx+iη(y−x)

× 〈P S|ψ̄(0)γ+εμνT ST νgF+
μ(ηn)ψ(λn)|P S〉.

(38)

Thus, from the structure of Eqs. (25a), (37) and (38), we
see that the function G F is identical to TF , having the same
dependence on transverse spin, with the substitution Aα →
F+α .

5 General form of the cross-section

We begin this section by giving the standard expression for
the Drell–Yan cross-section:

dσ

d4qd�
= α2

EM

s Q4 Lμν Wμν. (39)

The factorisation theorem provides the possibility to divide
the hard-scattering part from the soft part. Thus, defining φ1

and φ2, the correlators for the proton and the antiproton, we
may write the hadronic tensor in the following general form:

Wμν = 1

Nc

∑

a

e2
a

∫
d4 p1

(2π)4
d4 p2

(2π)4
δ4(p1 + p2 − q)

× Tr(φ1γ
μφ̄2γ

ν). (40)

For the case in which we consider an extra exchanged gluon,
we must include the gluon propagator in the trace, as we
shall in the next section. Note that this general form contains
δ4(p1 + p2 − q), which includes both the longitudinal and
the transverse components.

We now perform the collinear expansion of the cross-
section. To do this, we expand in a neighbourhood of momen-
tum transverse to the direction of the hadron motion. Calling
this momentum pT , we note that in the CS frame its only
non-zero components are along the X and Y directions and it
is thus of the form α X̂σ +βŶ σ . Understanding the derivative
as a gradient, we have

LμνWμν = LμνWμν |pT =0

− Q2

2

sin 2θ

2

∂

∂pT

[

cosφZ{μXν}Wμν

+ sin φZ{μYν}Wμν

]

pT =0
· pT

= LμνWμν |pT =0

− Q2

2

sin 2θ

2

[

cosφZ{μXν} + sin φZ{μYν}
]

×
[

Wμν +
(
∂Wμν

∂pT

)

pT =0
· pT

]

. (41)

We therefore now need to differentiate the hadronic tensor
with respect to the transverse momentum:

∂Wμν

∂pT
=
∫

d4 p1

(2π)4
d4 p2

(2π)4

× ∂

∂pT

(
δ4(p1+ p2−q) Tr

(
φ1γ

μφ2γ
ν
))
, (42)

which, in light-cone coordinates, is equivalent to

∂Wμν

∂pT
=
∫

d p+
1 dp2

1T

(2π)4
d p−

2 dp2
2T

(2π)4

×
[
∂δ2(qT )

∂pT
Tr
(
φ1γ

μφ̄2γ
ν
)

+δ2(qT )
∂

∂pT
Tr
(
φ1γ

μφ̄2γ
ν
)
]

. (43)

Integrating the first member by parts gives the second with
the opposite sign and so they cancel exactly. Thus, no linear
contributions in pT to the DY process survive and therefore
the derivative found in [2] is absent.

6 Calculation of the single-spin asymmetry

In this section we show all details of our calculation. We start
by noting that, via the optical theorem, we need an imaginary
part to obtain a non-zero SSA. Such a contribution can only
come from diagrams that involve a single gluon exchange
between the polarised hadron and the quark coming from the
other hadron. The diagram relevant here is shown in Fig. 3.
We now write an analytic expression for the hadronic tensor

Fig. 3 The twist-3 contribution to the Drell–Yan process (to which
must also be added the Hermitian conjugate)
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using the factorisation theorem. For the soft parts we write
the product of two correlators defined as in (8) and (35).

For the hard part we see on-shell propagation of the quark
before the photon production and must thus insert a quark
propagator before the first vertex. Considering the diagram
in Fig. 3, we may write

i
(
x̄ /P2 + (y − x) /P1

)

(x̄ P2 + (y − x)P1)2 + iε
. (44)

The relevant contribution to the denominator here is 2x̄(y −
x)P+

1 P−
2 = x̄(y − x)s. In the numerator we need only take

the ‘+’ component since the gluon comes from the proton
and, using the fact that the LAB and CM frames correspond,

(P+
1 )

2 = (P−
2 )

2 and therefore P+
1 =

√
s
2 p̂+. The propaga-

tor term then becomes

i
/̂p+

x̄
√

2s

(y − x)

(y − x)+ iε
. (45)

Similarly, for the Hermitian conjugate of the diagram in Fig. 3
the propagator becomes the complex conjugate and the roles
of x and y are interchanged. We thus have

−i
/̂p+

x̄
√

2s

(x − y)

(x − y)− iε
. (46)

Only these two terms contribute to the SSA owing to the
pole in the denominator at x = y, or simply when the gluon
carries zero momentum. This source of imaginary part can
be regularised via Cauchy’s theorem and used for the SSA
calculation [14–17].

Let us now examine the complete expression for the
hadronic part. We must evaluate the integral

∫

d2qT Wμν = e2

Nc

{

Tr

(

φ(x)γ μφ̄(x)γ ν
)

+
∫

dy

[

Tr

(

φαA(x, y)γ μ
/̂p+

x̄
√

2s

(y−x)

(y−x)+iε
γαφ̄(x̄)γ

ν

)

+ Tr

(

φαA(y, x)γ μφ̄(x̄)γα
/̂p+

x̄
√

2s

(x − y)

(x − y)+ iε
γ ν

)]}

.

(47)

The first term comes from the diagram with no gluon
exchange and contributes to the denominator of the SSA.
In order to evaluate it we make the expansion

φ(x) = 1

2

[
Vμγ

μ + Aμγ
5γ μ + iTμνγ

5σμν
]
, (48)

where
1

2
Vμ = 1

2
Tr
(
γμφ

) = f (x)Pμ, (49a)

1

2
Aμ = 1

2
Tr
(
γ5γμφ

) = g1(x)λPμ + gT (x)M STμ,

1

2
Tμν = 1

2
Tr
(
iσμνγ5φ

)
(49b)

= −h1(x)ST [μPν ] + hL(x)MλP[μnν ]. (49c)

Recalling that /P1 = P+
1 γ

−, /P2 = P−
2 γ

+, /̂p = γ− and
P+

1 P−
2 = s/2, we finally obtain

Tr
(
φ(x)γ μφ(x̄)γ ν

) = 2s
[

f (x) f (x̄)gμνT

+ g1(x) f (x̄)λiε−μ+ν + gT (x) f (x̄)iεσμ+νS1Tσ

]
.

(50)

Note that the only the first term is symmetric and thus alone
survives contraction with the leptonic tensor.

We now evaluate the second term of (47), containing the
twist-3 correlator. For a polarised hadron the full expansion
for the correlator becomes

φαA(x, y) =
[
iεα−μ+S1μ G A(x, y)+ Sα1 G̃ A(x, y) γ 5

+
(
λ1 HA(x, y) γ 5γ α + 2E A(x, y) γ α

)]
/P1

(51)

(recall that α is a transverse index), while for the unpolarised
hadron we only have the vector term f (x̄) /P1. Using again
/P1 = P+

1 γ
−, /P2 = P−

2 γ
+ and /̂p+ = γ−, we then have

1

x̄
√

2s

∫

dy
y − x

y − x + iε
f (x̄)

×
[
G A(x, y) iεαβT S1β P+

1 P−
2 Tr

(
γ−γ μγ−γαγ+γ ν

)

+ G̃ A(x, y)Sα1 P+
1 P−

2 Tr
(
γ 5γ−γ μγ−γαγ+γ ν

)]
. (52)

Evaluating traces and collecting the Levi–Civita tensor, we
obtain the final expression

−4i

x̄

√
s

2

∫

dy
y − x

y − x + iε

× f (x̄)
(

G A(x, y)− G̃ A(x, y)
)

g−μεναT S1Tα. (53)

Finally, we evaluate the third and last term of (47). Follow-
ing the same procedure and summing this with other results,
we obtain the complete expression:

−4i

x̄

√
s

2

{∫

dy g−μεναT S1Tα

×
[

y − x

y − x + iε

(
G A(x, y)− G̃ A(x, y)

)

− y − x

y − x − iε

(
G A(y, x)− G̃ A(y, x)

)]
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+
∫

dy
y − x

y − x − iε
S1Tα

×
(

G A(y, x)g−{μ
ε
ν}α
T − G̃ A(y, x)ε−μαν

)}

. (54)

With our choice of gauge and using (37), this is equivalent
to the gauge-invariant expression:

− 4

x̄

√
s

2
f (x̄)

{∫

dy g−μεναT S1Tα

×
[ −1

y − x + iε

(
G F (x, y)− G̃ F (x, y)

)

− 1

y − x − iε

(
G F (y, x)− G̃ F (y, x)

)]

+
∫

dy
1

y − x − iε
S1Tα

×
(

G F (y, x)g−{μ
ε
ν}α
T − G̃ F (y, x)ε−μαν

)}

, (55)

where only the first two terms are symmetric and thus survive
contraction with the leptonic part. We now regularise the pole
via Cauchy’s theorem and take the imaginary part to obtain
the following expression:

4

x̄

√
s

2
f (x̄)

{∫

dy g−μεναT S1Tα

× (−iπ)δ(y − x)
[
G F (x, y)− G̃ F (x, y)

− G F (y, x)+ G̃ F (y, x)
]

−
∫

dy iπδ(y − x)G F (y, x) g−{μ
ε
ν}α
T S1Tα

}

. (56)

Note that the δ-function sets the term inside the square brack-
ets to zero. Adding the first term of (47), performing the
sum over colours and reinstating the factor e2/Nc, we finally
obtain

Wμν = e2

Nc
4s f (x̄)

[

− 1

2
f (x) gμνT

− 1

x̄
√

2s
G F (x, x) g−{μ

ε
ν}α
T S1Tα

]

. (57)

The final operation to perform is contraction with the lep-
tonic tensor, following formula (41). We start by evaluating
the first term in the collinear expansion (41), i.e. with pT

identically zero:

LμνWμν |pT =0 = − e2

Nc
f (x̄)

[

2s f (x) Lμν gμνT

− 4s

x̄
√

2s
G F (x, x) Lμν g−{μ

ε
ν}α
T S1Tα

]

= s
e2

Nc
Q2 f (x̄)

[

(1 + cos2 θ) f (x)

−|S1T |
x̄
√

s
sin 2θ sin φ1 G F (x, x)

]

. (58)

Inserting now Eq. (57) into the second term of formula
(41), recalling that the derivative term vanishes and noting
that only the Z{μXν} and Z{μYν} terms in Lμν survive, we
find that this contribution is identical to the second term of
Eq. (58) and thus implies a factor 2. With this final observa-
tion, to first order in the collinear expansion, we have

LμνWμν = s
e2

Nc
Q2 f (x̄)

[

(1 + cos2 θ) f (x)

−2|S1T |
x̄
√

s
sin 2θ sin φ1 G F (x, x)

]

,

which leads to the following SSA:

AN = − 2

Q

sin 2θ sin φ1

1 + cos2 θ

∑
a e2

a fa(x̄)G F a(x, x)
∑

a e2
a fa(x̄) fa(x)

. (59)

7 Conclusions

As in [9,10], we find it crucial in our calculation to perform
the collinear expansion with due respect to all possible ensu-
ing transverse-momentum dependence. However, the extra
contribution generated is of the same sign and magnitude
as the naïve part, thus leading to an overall factor of 2 with
respect to the older calculations and 4 for the later. Unfortu-
nately, the level of detail provided in [8] renders full in-depth
comparison impossible. We note too that, while an explana-
tion is proposed in [9], the level of detail is again not sufficient
to permit comparison. With regard to [10], the origin of the
extra piece there does not appear to be the same as that of [9].
Indeed, the authors appear to claim that in earlier papers the
error lies in an incorrect expansion of the hadronic tensor,
whereas the authors of [9] point to a failure to expand the
leptonic tensor.

In conclusion, we have repeated the calculation of the
transverse SSA in DY, including the contribution arising from
collinear expansion of the leptonic tensor, as suggested in
[9], and find a factor of 4 with respect to the most recent
calculations presented in [9,10]; we thus find ourselves in
agreement with the results of [8]. Unfortunately, however,
with the published detail available, we cannot point clearly
to possible sources of errors in the other papers.
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