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Abstract Inspired by the recent observation of the charged
charmoniumlike structure Z.(4025), we explore the Y (4260)
— (D*D*)"xT decay through the initial-single-pion-
emission mechanism, where the D*D* — D*D* interac-
tion is studied by the ladder approximation, including the
non-interacting case. Our calculation of the differential decay
width for ¥ (4260) — (D*D*)~ ™t indicates that a charged
enhancement structure around D* D* appears in the D* D*
invariant mass spectrum for this process, which might corre-
spond to the newly observed Z.(4025) structure.

1 Introduction

Very recently, the BESIII Collaboration announced the obser-
vation of a charged charmoniumlike structure, Z.(4025),
which appears in the 7 recoil mass spectrum of eTe™ —
(D*D*)*n ¥ at /s = 4.26 GeV. Its mass and width are
M = (40263 £26 £ 3.7) MeV and I' = (24.8 &+
5.6 £ 7.7) MeV [1]. Thus, Z.(4025) is near the (D*D*)*
threshold.

Before the observation of Z.(4025), the Belle Col-
laboration reported a charged bottomoniumlike structure
Z,(10650) by studying Y(10860) — (B*B*)*nF [2],
where Z;,(10650) is near the (B* B*)* threshold. The sim-
ilarity between Z.(4025) and Z,(10650) indicates that
Z:(4025) can be seen as the counterpart of Z;,(10650). In
Ref. [3], we have proposed an explanation in terms of the
initial-single-pion-emission (ISPE) mechanism proposing
the reason why Z,(10650) exists in the decay Y (10860) —
(B* B*)*7¥. What is more important is that we have already
predicted a charged structure near the D*D* threshold in
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the (D*D*)* invariant mass spectrum of i (4415) —
(D*D*)*7 ¥ in the same paper.

This recent experimental discovery of Z.(4025) provides
us with more opportunities to further reveal the underly-
ing mechanism behind this novel phenomenon. In the past
decades, the experimental search for exotic states beyond
the conventional hadron configurations is an important and
intriguing research topic. The peculiarities of Z.(4025)
immediately lead us to recognize that Z.(4025) might be the
most reliable candidate as an exotic state. However, before
giving a one-sided view, we need to exhaust all the possibil-
ities under the conventional frameworks.

In this manner, in this paper we analyze the decay pro-
cess Y (4260) — (D*D*)TxF via the ISPE mechanism or
its extension to include higher orders. This mechanism [4]
was first proposed to understand why two the bottomonium-
like structures Z;(10610) and Z;(10650) can be found in the
Y(nS)n* (n=1,2,3)and hy(mP)w* (m = 1, 2) invariant
mass spectra of ete™ — Y(S)mrtrw~, hpy(mP)rtm™ at
/s = 10865 MeV [5]. Later, the ISPE mechanism had been
extensively applied to the study of the hidden-charm dip-
ion/dikaon decays of higher charmonia and charmoniumlike
states [6-8], the hidden-bottom dipion decays of Y (11020)
[9], and the hidden-strange dipion decays of Y (2175) [10],
where many novel phenomena of the charged enhancement
structures have been predicted. In this work, by studying
the process Y (4260) — (D*D*)~xT, we expect to answer
the question whether the newly observed charged structure
Z:(4025) can be explained by the ISPE mechanism, which
is an intriguing research topic, too, as regards the search
for the underlying mechanism behind this kind of novel
phenomena.

This work is organized as follows. After the introduction,
we present the calculation of ¥ (4260) — (D*D*)* 7 ¥ via
an extension of the ISPE mechanism, where the description
of the interaction D**D*~ — D*0D*~ is given by the
ladder diagrams applying an effective Lagrangian approach.
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In Sect. 3, the numerical results are shown in comparison with
the experimental data. The last section is a short summary.

2 Y(4260) — (D*D*)~ ™t decay

The ISPE mechanism for ¥ (4260) — (D*D*)~ 7T is shown
by the diagram in Fig. 1. Due to this mechanism, the emit-
ted pion from the Y (4260) decay plays a very important
role and has a continuous energy distribution, which eas-
ily enables D*” and D*~ with low momenta to interact with
each other. Thus, in the following our main task is to describe
the D**D*~ — D*0D*~ interaction and combine this reac-
tion with the corresponding Y (4260) decay. In this work, we
include a tree diagram, i.e., the case that the kernel does not
include an interaction.

To calculate the D* D*~ — D*0 D*~ interaction near the
threshold as depicted by a gray kernel shown in Fig. 1, we
adopt aladder approximation as presented in Fig. 3, where we
borrow some ideas from the Bethe—Salpeter equation [11].
After expanding the amplitude by a partial wave basis, the
ladder diagrams with n loops can be expressed as a geometric
series, which allows us to sum over all the ladder diagrams
(see the first row in Fig. 3). This treatment is allowed when the
higher loop contribution is as large as the lower-order one. In
order to have a geometric series we make a further approxi-
mation for the ladder diagrams to insert cuts in between all the
white kernels as shown in the first row of Fig. 1. Furthermore,
in this work we introduce a pion exchange and a contact term
as the main contributions to the direct D*0D*~ — D*0p*~
interaction as listed in the second row of Fig. 3 depicted
by the white kernel which is included in the gray kernel.
The contact term can be regarded as an effective one due to
the collection of heavier particle exchanges other than the
pion and hence there appears a relative phase to the one-pion
exchange term. Here, we need to emphasize that we may use
only a contact term to construct a much simpler model assum-
ing that one-pion exchange can be approximated by a con-
tact term. However, one-pion exchange actually denotes the
long-distant contribution, while the contact term reflects the
short-distant contrition from the heavier meson exchanges.
Considering these facts, we would like to introduce both the
one-pion exchange and the contact terms.

In the following, we first give the general formula describ-
ing the two body — two body process.

Before obtaining a total amplitude of Fig. 1 and all the
ladder diagrams of the first row of Fig. 3, we need to consider
the following items and prescriptions.

1. Feynman diagrams in Fig. 3 are directly described in terms
of two-particle bases, |p1, p2, 51, 52, 01, 02), in the ini-
tial and final states. On the other hand, a simple rela-
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Fig. 1 The typical diagram depicting Y (4260) — m+D*9D*~ via

the ISPE mechanism. Here, the gray kernel represents the D*0D*~ —
D*0 D*~ interaction given in Fig. 3

7T+

Y (4260)
D=
1

Fig. 2 The diagram in which a cut is inserted in Fig. 1 which is used
to calculate the final total amplitude

Do D0 D D0 po 0 D0 : D0
D D* D*~ D*” D* D D*~ 1 D*~
1
D0 D0 Do D0 D0 D0
= U X
D— D D™ D D D

Fig. 3 The ladder approximation denoted by a gray blob for the
D*0p*= — D*OpD*= interaction. Here, we consider an elementary
contribution of the four-point vertex coming from the pion exchange
and the contact term denoted by a white blob. The vertical dashed line
is acut

tion between gray and white blobs is obtained if they are
expressed in terms of a partial wave basis, |p, j, g, £, s).
Detailed propertied of these bases which are used in deriv-
ing equations below are give in the appendix.

2. Insert cuts in all the places in a gray blob where two prop-
agators connecting two white blobs like the first row in
Fig. 3 appear.

. Expand the gray blob in terms of the white blobs.

4. Attach the tree vertex, Y (4260)7+ D**D*~, to the gray

blob in Fig. 3.

5. One cut is now inserted between the vertex and the
gray blob, as in Fig. 2, so that the total amplitude in
Fig. 1 can be seen as a multiplication of the tree ver-
tex, Y (4260)w T D*Op*= and the approximate ladder dia-
grams.

(O8]
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Using Eq. (20), the gray and white blobs are expressed as
(4.7.6.251T1p. oo ts)=TOP p — 90, ()

ER , )y o5 4
(¢.7.6. 051001 p. oo, ts)=T" (0) 54— @

which are expressed in partial wave bases, and 7" and Tj are
the corresponding 7" matrices, respectively. Following items
2 and 3 above, the diagrams listed in the first row of Fig. 3
can be finally described by the series

TO(p) = 1+iBT" (p) + (BT ()T (p) + - -
1

S 3
1= ipT" (p) )

where g = (277)*/2, all the indices are suppressed, and we

have the amplitude Z)(‘i ) ( p)ﬁ:i, which consists of the one-pion
exchange contribution and the contact term. All the quantities
included in Eq. (3) should be tacitly understood to be matrices
and should be accordingly multiplied with each other.
Thus, by inserting the completeness condition for the two-

particle basis given by Eq. (15) we can express 76” )( p)?ﬁ
as

(), \bsedy
Ty" (8 (p—a)
= <q7j’&’£a§|TO|p’j’ o, ¢, S)
= Y [Erdndnds

5i.8],0/,0;

x{q.j,5.€,5|p1.s1,01; pa, $2,00)

x(p,s1,01; Py, 85, 05|p, j, 0, L, s)

x(p1,s1,01; p2, 52, 02| To| ', 51, 013 P). 55, 03) 4)

with d*p = d*p/ (27)32E)).

Having the above preparation and using the effective
Lagrangian approach, we illustrate how to obtain the matrix
element (p1, s1,01; p2, 52, 02|To| p}, 51, 01; P5, 85, 05) for

the D**D*~ — D*0D*~ interaction discussed. The effec-
tive Lagrangians involved are given by

Ly 4260)p*D*x = —igy prprr€**P7 Y, D}d,m D}
—ihYD*D*UEMU'OUBMYUD;TL’D::, 5)

ED*D*D*D* = g (ZD:TDZD*TUD*M _ DZTD*MD:TD*V
—D;*D;‘D*T”D*M) , 6)

Lpprn = —gp*p*x€""P° 8, Dind, Dk, (7

where these Lorentz structures are given in Refs. [12-16].
These effective Lagrangians are obtained by assuming the
SU(2) invariance among couplings of the SU(2) pseu-
doscalar and vector multiplets as usual. The coupling con-
stant gp+p+, can be related to the D* — D decay [17]

and, hence, gp+p+; = 8.94 GeV~! is obtained [18]. How-
ever, the coupling constants gy p=p+, and hy p+p+; cannot
be constrained since they are related to the inner structure
of Y (4260). In this work, we will discuss the line shapes of
the D** D™ invariant mass spectra when taking different
values of & = hyp+p+*r /€Y D*D*r -

The amplitude for the interaction D*0(p,, €2) D*~ (p1, €1)
— D*0(py, €4)D*~ (p3, €3) by exchanging one pion is

1

2 *
Aﬂ—exchange = _gD*D*nSHVpGpluelup?)pE?m q2 m2
b

Xsaﬂy8p4a61ﬂp2y628» (®)

while the amplitude for the contact term reads

A contact = &+ prprp+ [4(€2 - €3) (€1 - €§) — 2(€2 - €)
X (€1 - €3) — 2(e1 - €2)(€5 - €))]. )

In addition, the tree amplitude of the direct Y (4260)(p, €y)
— D*(py, ) D*~ (p1, )7 F (k) decay is

Aypsprr = —gYD*D*nE’prEikufikupr
X (S5k + p1 + p2 +3&p)s. (10

As for the process D¥D* — D*0D*= the matrix ele-
ment (p1, 51, 01; P2, 52, 02| To| p}. 81, 03 P5, 85, 05) in Eq.
(4) can be further expressed as

. Y Y
(p1,51,01; p2, 52, 02|To| Py 51, 013 o, 53, 03)
=A;_ exchange e? A contacts (1D

where the phase ¢ is introduced.

Following item 3, we need to insert the cut in between
the tree vertex and the gray blob as in Fig. 2. There have
been a couple of examples to calculate the decay amplitudes
by inserting a cut between a tree vertex and other diagrams.
See, e.g., Refs. [19,20] and [21]. Finally, by using Eq. (3),
the total partial wave amplitude for the process Y (4260) —
7t D*0D*~ discussed in this work becomes

() o 05 () NS ) o,
Ttotal(l’)z,s =T (P)z',s'TYD*D*n(P)z,s ] 12)

where 7, Y(lD)* Do ( p)ﬁtf/ is the tree amplitude given by Eq.
(10) expressed in a partial wave basis like in Eq. (4).

Summing over all ’];((){31 ( p)g’f partial amplitudes with dif-
ferent quantum numbers, we get the total amplitude M. The

differential decay width reads
1

F=————— |MPph Pz ldm . 5d25edQr,

(27T)516M12/(4260)| | |PD (24 D*D D e

(13)

where p;; is the three-momentum of the emitted pion in the
rest frame of ¥ (4260), while (p},., 7)) are the momentum
and the angle of D* in the cms rest frame of the D*” and
D*~ mesons. 2, denotes the angle of 7 in the rest frame of
Y (4260) and m py . is the D** D*~ invariant mass.
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Fig. 4 (Color online) The obtained line shape (red curve) in the D* D*
invariant mass spectrum of ¥ (4260) — 7+ D*0D*~ and the compar-
ison with the experimental data (blue dots with error) [1]. Here, the
green vertical dashed line denotes the D* D* threshold. Our theoretical
result (red curve) is obtained by taking the typical values g. = 60.827,
¢ =0.986,and £ = 1

3 Numerical results

With the above analytical calculations, in the following
we present the differential decay width of Y (4260) —
7t D**D*~ dependent on the m p+p+ Invariant mass (see
Fig. 4), where three free parameters, g., &, and ¢, are involved
in our calculation. By this study, we want to answer the ques-
tion whether the newly observed Z.(4025) can be reproduced
by our model. In our numerical calculation, we only take the
£ = 0 partial wave, since its contribution is dominant.

The comparison between our theoretical result and the
experimental data indicates that we can simulate the enhance-
ment structure near the D* D* threshold, which is similar to
the Z.(4025) structure observed by BESIII as just shown in
Fig. 4. Here, we notice that there appear experimental data
below the threshold, which are due to the adopted experi-
mental method, i.e., BESIII has studied the =T recoil mass
spectrum [1]. The above comparison between theoretical and
experimental results provides direct evidence that the newly
observed Z.(4025) structure can be well understood in terms
of the ISPE mechanism.

4 Summary

In summary, a new charged enhancement Z.(4025) near the
D*D* threshold has been reported by BESIII. This intrigu-
ing experimental observation not only makes the family of
the charged charmoniumlike structure become abundant, but
also it stimulates our interest in revealing the underlying
mechanism behind this novel phenomenon. In this work, we
study the ¥ (4260) — 7+ D*Y D*~ decay via the ISPE mech-
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anism, where the involved D**D*~ — D*0 D*~ interaction
is considered by introducing the ladder diagrams. Our result
shows that there exists an enhancement structure near the
D* D* threshold appearing in the D* D* invariant mass spec-
trum of ¥ (4260) — 7= D*OD*~, which can correspond to
the newly observed Z.(4025). This fact indicates that the
ISPE mechanism existing in the Y (4260) decays can be seen
as one of the possible mechanisms to explain this new BESIII
observation.

At present, experimental work has made great progress
in searching for charged bottomoniumlike and charonium-
like structures. Studying these phenomena is an interesting
research topic full of challenges and opportunities. Further
theoretical and experimental efforts will be helpful to finally
understand what the reason is for the phenomena revealed in
these observations.

Before closing this section, we need to discuss further
developments of our model.

1. In this work, we have neglected the coupled-channel
effect arising from one-loop box diagrams like D*0 D*~
— D°D~/D**D=/D°D*~ — D*D* via two n°
exchange. Hence, in the next step, we need to include
the coupled-channel effect in our model.

2. In this work, we introduce only the imaginary part of the
loop when calculating the diagrams listed in Fig. 3. To
some extent, this treatment is an approximation. Hence,
we need to develop our model to include the real part of
the loop diagrams.
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Appendix A: Relation between partial wave and two-
particle bases

A two-particle state, which is characterized by the three-
momenta pi, p> and the z-components o7, o7 of the corre-
sponding spins s1, 52, canbe defined as | p1, p2, s1, 52, 01, 02),
which satisfies the normalization

(P11, 01; Pa, 85, 03| P1, 51,015 P2, 82, 02)
= 83(171 - p/1)83(p2 - pé)asislSsészsalal/aazaz/ (14)
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with &3 (p) = (27)32ES? (p). The completeness condition
gives

> /d3151d3152 |p1, 51,015 p2, 52, 02)

51,82,01,02

x(p1,s1,01; p2, 52, 02| =1, (15)
where d°p = d°p /((27)*2E,).

A partial wave basis can be expressed in terms of two-
particle bases as

Ip,j,o, L s)
1 p .
= 3007 /E—p”%:(sl,01,s2,02|s,m)(s,m,€,€z|],0)
0,
x/dsszf(szm>|p1,s1,m;pz,sz,(m, (16)

where €2, is the solid angle of the momentum p;, Y, f “(2p))
denotes spherical harmonics, ; —(+5and5 = 51 + 5.
We also define the four-momentum p = p; + p and E), is
the zeroth component of p. In addition, (s, o1; $2, 02|s, m)
and (s, m; ¢, £,|j, o) are the Clebsch—-Gordan coefficients.
A partial wave basis satisfies the normalization

(P i o s p,j ol sy =84 p — )i iSoroduedss -

a7
The completeness condition gives
> fd“mp, oo ts)p. .o ts| = 1. (18)
j,o,l,s
The inner product of two different bases is given by
(P1, 51, 01: P2, 52, 02|p, j, 0, L, 5)
3 E
=2Q2n7) | — 8 (p1+ p2—p)
pil
. ¢,
X Z(sl, o1; 82, 02|s,m)(s,m; £, L] ], a)Ye‘ (2p).
m,
(19)

Any amplitude can be expressed as a tensor form in terms
of partial wave bases,

(q.].6.L5IT|p. j.o.t.s) =TD(p)gis*(p—q) . (0)

Here, we need to notice that Eq. (20) is independent on the
quantum numbers j, &, and o, which is consistent with the
constraint from the Wigner—Eckart theorem.
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