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Abstract We consider the closed string propagating in a
weakly curved background which consists of a constant met-
ric and a Kalb–Ramond field with an infinitesimally small
coordinate-dependent part. We propose a procedure for con-
structing the T -dual theory, performing T -duality transfor-
mations along the coordinates on which the Kalb–Ramond
field depends. The theory obtained is defined in the non-
geometric double space, described by the Lagrange multi-
plier yμ and its T -dual in the flat space ỹμ. We apply the pro-
posed T -duality procedure to the T -dual theory and obtain
the initial one. We discuss the standard relations between the
T -dual theories that imply that the equations of motion and
momentum modes of one theory are the Bianchi identities
and the winding modes of the other.

1 Introduction

In string theory, duality symmetry was for the first time
described in the context of toroidal compactification in [1–
3] (thoroughly explained in [4,5]). If only one dimension is
compactified on a circle with radius R, then under the trans-
formation

R → α′

R
, Φ → Φ − log

(
R√
α′

)
, (1)

where α′ is the Regge slope parameter, the physical features
of the interacting theory remain the same. This kind of sym-
metry can be generalized to the arbitrary toroidal compact-
ification [6], and extended to the non-flat conformal back-
grounds [7,8]. In the case of the open string, there exists a
relation between the T -dual background fields and the coor-
dinate non-commutativity parameters [9], as well as the rela-
tion between fermionic T -dual fields and the momenta non-
commutativity parameters [10].
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In Buscher’s construction of the T -dual theory [7,8,11],
one starts with the manifold containing the metric Gμν , the
antisymmetric field Bμν , and the dilaton field Φ. It is required
that the metric admits at least one continuous abelian isom-
etry which leaves the action for the σ -model invariant. One
can choose the target space coordinates xμ = (xi , xa), such
that the isometry acts by translation of the periodic coor-
dinates xa . The T -duality along these directions changes
xa-independent background fields G, B, Φ into the corre-
sponding T -dual fields G̃, B̃, Φ̃. In this way, one connects
different geometries and two seemingly different σ -models.
This method was originally obtained in a non-covariant way
(because of the choice of coordinates), but it was soon slightly
modified, which led to a covariant construction [12].

In the covariant construction, the isometry is gauged by
introducing the gauge fields v

μ
α . To preserve the physical

meaning of the original theory, one requires that the new
fields v

μ
α do not carry the additional degrees of freedom.

This means that these fields are pure gauge with vanishing
field strength,

Fμ
αβ = ∂αv

μ
β − ∂βvμ

α . (2)

This requirement is included in the theory by adding the
term yμFμ

01 into the Lagrangian, with yμ being the Lagrange
multiplier. This guarantees that at the classical level the dual
theory will be equivalent to the original one. Integrating over
the Lagrange multipliers yμ, one simply recovers the original
theory. The integration over the gauge fields v

μ
α , produces the

T -dual theory. The non-abelian extension to T -duality has
been considered in [13–16].

In the construction above, the background fields were con-
stant along the xa directions. In the present article, we con-
sider a weakly curved background. We allow the background
fields to depend on the coordinates along which we perform
duality transformations. Note that the constant shift of coor-
dinates remains a global symmetry in this background.

To gauge the global isometry, we introduce the gauge
fields v

μ
α , as usual. The replacement of the derivatives ∂αxμ
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with the covariant ones Dαxμ, does not make the whole
action invariant. The obstacle is the background field Bμν ,
depending on xμ, which is not locally gauge invariant. There-
fore, in addition we should covariantize xμ as well. At this
point, we will depart from the conventional approach. We
take the invariant coordinates as the line integral of the covari-
ant derivatives of the original coordinates,

Δxμ
inv =

∫
P

(dξ+ D+xμ + dξ−D−xμ)

= xμ − xμ(ξ0) + ΔV μ
[
v+, v−

]
, (3)

where ΔV μ is a line integral of the gauge fields v
μ
α . As before,

to obtain a theory physically equivalent to the original one,
all degrees of freedom carried by the gauge fields v

μ
α should

be eliminated. Therefore, we add a Lagrange multiplier term
yμFμ

01 into the Lagrangian. This allows us to consider xμ
inv and

V μ as primitives up to a constant of Dαxμ and v
μ
α , respec-

tively. Using the local gauge freedom, we fix the gauge, tak-
ing xμ(ξ) = xμ(ξ0).

Thus we succeed in generalizing the gauged action. Sub-
stituting the solution of the equations of motion for the
Lagrange multiplier into the gauge fixed action one obtains
the original action. The T -dual theory is obtained for the
equations of motion for the gauge fields v

μ
α . These equations

must be resolved iteratively, because

1. the action is not bilinear in v
μ
α as the background fields

depend on V μ [vα];
2. V μ is the line integral of v

μ
α .

The fact that this background is characterized by an
infinitesimally small parameter enables one to solve the prob-
lem and find the T -dual action. There are two essential dif-
ferences in the T -dual action in comparison to the flat back-
ground case. The first one is that the target space of the T -
dual theory in the weakly curved background turns out to
be a non-geometrical one [15–28]. This is a doubled space
with two coordinates, one of them being the Lagrange mul-
tiplier as in the case of the flat background. The second one
is the T -dual of the first in the flat space. The second differ-
ence is the coordinate dependence of both dual background
fields as a consequence of the coordinate-dependent initial
Kalb–Ramond field.

The theory defined above has one additional difficulty:
the invariant coordinates Δxμ

inv and ΔV μ are defined as line
integrals along arbitrary path P . We will show that the equa-
tion of motion for the Lagrangian multiplier yμ, forces the
field strength Fμ

01 to vanish, which guarantees that Δxμ
inv and

ΔV μ are independent on the choice of the path P .
Because T -duality leads to an equivalent theory, we

expected that the T -dual of the T -dual theory is the initial
one. The T -dual theory is defined in doubled space, but is

still globally invariant under the shift of the T -dual coordi-
nate yμ. Gauging this symmetry, we show that the T -dual of
the T -dual is indeed the original theory.

2 Bosonic string in the weakly curved background

Let us consider the action [29,30]

S =κ

∫
Σ

d2ξ

[
1

2
ηαβGμν [x]+εαβ Bμν [x]

]
∂αxμ∂β xν, (4)

describing the propagation of the bosonic string in the non-
trivial background, defined by the space-time metric Gμν

and the Kalb–Ramond field Bμν . The integration goes over
a two-dimensional world-sheet Σ parametrized by ξα (ξ0 =
τ, ξ1 = σ ), where the intrinsic world-sheet metric gαβ

is taken in the conformal gauge, gαβ = e2Fηαβ . Here,
xμ(ξ), μ = 0, 1, . . . , D − 1 are the coordinates of the D-
dimensional space-time, κ = 1

2πα′ and ε01 = −1.
Introducing the light-cone coordinates and their derivati-

ves

ξ± = 1

2
(τ ± σ), ∂± = ∂τ ± ∂σ , (5)

and defining

Π±μν [x] = Bμν [x] ± 1

2
Gμν [x], (6)

the action (4) can be written in the form

S [x] = κ

∫
Σ

d2ξ ∂+xμΠ+μν [x] ∂−xν . (7)

The consistency of the theory requires the conformal
invariance of the world-sheet on the quantum level. This
requirement results in the space-time equations of motion
for the background fields. To the lowest order in the slope
parameter α′, these equations have the form

Rμν − 1

4
Bμρσ B ρσ

ν + 2Dμ∂νΦ = 0,

Dρ Bρ
μν − 2∂ρΦBρ

μν = 0, (8)

4(∂Φ)2 − 4Dμ∂μΦ + 1

12
Bμνρ Bμνρ − R = 0,

where Bμνρ = ∂μBνρ + ∂ν Bρμ + ∂ρ Bμν is the field strength
of the field Bμν , and Rμν and Dμ are the Ricci tensor and the
covariant derivative with respect to the space-time metric. Φ
is the dilaton field and D is the dimension of the space-time.
We consider one of the simplest coordinate-dependent solu-
tions of (8). This is the weakly curved background, defined
by the following expressions:
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Gμν = const,

Bμν [x] = bμν + 1

3
Bμνρxρ ≡ bμν + hμν [x], (9)

Φ = const.

This background is the solution of the space-time equations
of motion, if the constant Bμνρ is taken to be infinitesimally
small and all the calculations are done in the first order in
Bμνρ .

A weakly curved background was considered in [31–33],
where the influence of the boundary conditions on the non-
commutativity of the open bosonic string has been investi-
gated. The same approximation (not referred to as a weakly
curved background) was considered in [34], where non-com-
mutativity of the closed string was investigated. In the present
paper, we will investigate the closed bosonic string mov-
ing in the weakly curved background, with the goal to find
the generalization of the Buscher construction of the T -dual
theory.

3 Generalized Buscher construction

In the standard Buscher construction of the T -dual theory, the
premise is that the target space has isometries. It is possible to
choose adapted coordinates xμ = (xi , xa), so that the isome-
tries act as translations of the xa components; the background
fields are taken to be xa-independent, and the action is invari-
ant under the global shift symmetry. The weakly curved back-
ground preserves this symmetry, despite the xa-dependence
of the background fields. As this is not obvious, let us first
demonstrate that the constant shift

δxμ = λμ = const, (10)

leaves the action (7) for the closed string invariant. For sim-
plicity, we assume that all the coordinates are compact.

As Bμν is linear in the coordinates, one has

δS = κ

3
Bμνρλρ

∫
d2ξ∂+xμ∂−xν

= κ

3
Bμνρλρεαβ

∫
d2ξ∂αxμ∂β xν . (11)

This is proportional to the total divergence

δS = κ

3
Bμνρλρεαβ

∫
d2ξ∂α(xμ∂β xν) = 0, (12)

which vanishes in the case of a closed string and a topologi-
cally trivial mapping of the world-sheet into the space-time.

3.1 Gauging shift symmetry

In the present paper, the procedure for gauging the global
shift symmetries is different from the conventional one [7,8,
15,16,35]. The coordinate dependence of the Kalb–Ramond
field separates us from the conventional approach.

To localize the global symmetry, we introduce the inde-
pendent world-sheet gauge fields v

μ
α and substitute the ordi-

nary derivatives with the covariant ones

∂αxμ → Dαxμ = ∂αxμ + vμ
α . (13)

We want the covariant derivatives to be gauge invariant, so
we impose the transformation law for the gauge fields

δvμ
α = −∂αλμ, (λμ = λμ(τ, σ )). (14)

This replacement is, however, not sufficient to make the
action locally invariant because the background field Bμν

in a weakly curved background depends on the coordinate
xμ, which is not gauge invariant. Thus, there is one more
important step to be done. We should replace the coordinate
xμ, with some extension of it, where only the gauge fields
v

μ
α already introduced will appear. Let us define the invariant

coordinate by

Δxμ
inv ≡

∫
P

dξα Dαxμ =
∫
P

(dξ+ D+xμ + dξ−D−xν)

= xμ − xμ(ξ0) + ΔV μ, (15)

where

ΔV μ ≡
∫
P

dξαvμ
α =

∫
P

(
dξ+v

μ
+ + dξ−v

μ
−
)
. (16)

The line integral is taken along the path P , from the initial
point ξα

0 (τ0, σ0) to the final point ξα(τ, σ ).
We require the T -dual theory to be equivalent to the initial

one. Therefore, we do not want to introduce new degrees of
freedom, originating from the gauge fields. Therefore, we
will require the corresponding field strength,

Fμ
αβ ≡ ∂αv

μ
β − ∂βvμ

α , (17)

to vanish. We can achieve this by introducing the Lagrange
multiplier yμ, and the appropriate term in the Lagrangian
which will force Fμ

+− ≡ ∂+v
μ
− − ∂−v

μ
+ = −2Fμ

01 to vanish.
Thus, the gauge invariant action is

Sinv = κ

∫
d2ξ

[
D+xμΠ+μν [Δxinv] D−xν

+1

2

(
v

μ
+∂−yμ − v

μ
−∂+yμ

)]
, (18)

where the last term is equal to 1
2 yμFμ

+− up to a total diver-
gence. Now, we can use the gauge freedom to fix the gauge.
It is easy to see that xμ(ξ) = xμ(ξ0) is a good gauge fixing.
So, the gauge-fixed action equals

Sfix
[
y, v±

] = κ

∫
d2ξ

[
v

μ
+Π+μν [ΔV ] vν−

+1

2

(
v

μ
+∂−yμ − v

μ
−∂+yμ

)]
, (19)
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where yμ and v
μ
± are independent variables and ΔV μ is

defined in (16).
Note that we can also define xμ

inv and V μ as the solutions
of the equations ∂αxμ

inv = Dαxμ and ∂αV μ = v
μ
α . Thus, xμ

inv
and V μ are in fact primitives and due to the presence of the
term 1

2 yμFμ
+− in the Lagrangian they are well defined up to

a constant.

4 From gauge-fixed action to the original and T -dual
action

From the gauge-fixed action (19), we can obtain equations
of motion, varying over the Lagrange multiplier yμ and the
gauge fields v

μ
±. Substituting the solution of the equation of

motion for the Lagrange multiplier into (19) we will obtain
the original action, while substituting the solution of the equa-
tions of motion for the gauge fields we will obtain the T -dual
theory.

4.1 Eliminating the Lagrange multiplier

Let us show that for the equation of motion for the Lagrange
multiplier

∂+v
μ
− − ∂−v

μ
+ = 0 (20)

the gauge-fixed action (19) reduces to the original action (7).
This equation of motion enforces the field strength of the
gauge fields Fμ

+− to vanish, and therefore makes the variable
ΔV μ defined in (16) path independent. To prove this, let us
show that ΔV μ is equal to zero for a closed path. If P is a
closed path, then, using Stokes’ theorem, the defining integral
along P can be rewritten as the integral over the surface S
which spans the path P = ∂S of the field strength of the
gauge fields∮
P=∂S

dξαvμ
α =

∫
S

d2ξ
(
∂+v

μ
− − ∂−v

μ
+
)
, (21)

which is obviously zero on (20).
The solution of (20)

v
μ
± = ∂±xμ, (22)

substituted into (16) gives

ΔV μ(ξ) = xμ(ξ) − xμ(ξ0). (23)

Taking into account that the action does not depend on the
constant shift of the coordinate, we can omit xμ(ξ0) and thus
the action (19) becomes

Sfix
[
v± = ∂±x

] = κ

∫
d2ξ ∂+xμΠ+μν [x] ∂−xν, (24)

which is just the initial action (7).

4.2 Eliminating the gauge fields

The T -dual action will be obtained by integrating out the
gauge fields from (19). The equations of motion with respect
to the gauge fields v

μ
± are

Π∓μν [ΔV ] vν± + 1

2
∂±yμ = ∓β∓

μ [V ], (25)

with the terms β∓
μ [V ] defined by

β±
μ [x] = ∓1

2
hμν [x] ∂∓xν . (26)

Notice that the β∓
μ come from the variation with respect

to ΔV μ(ξ), the argument of the background fields. To show
this, let us find the variation with respect to V μ (which
depends on v

μ
±):

δV Sfix = κ

∫
d2ξ vν+∂μ Bνρv

ρ
− δV μ

≡ κ

∫
d2ξ ημδV μ, (27)

where, with the help of the relation

∂αV μ = vμ
α , (28)

we have

ημ = ∂μ Bνρεαβ∂αV ν∂β V ρ. (29)

So, we can write

ημ = ∂αβα
μ [V ], βα

μ [x] ≡ −εαβhμν [x] ∂β xν, (30)

with hμν defined in (9) and consequently

δV Sfix = −κ

∫
d2ξβα

μ [V ] δvμ
α

= −κ

∫
d2ξ

[
β+

μ [V ] δv
μ
+ + β−

μ [V ] δv
μ
−
]
, (31)

where β±
μ [x] = 1

2

(
β0

μ [x] ± β1
μ [x]

)
is defined in (26).

Because V μ is function of v
μ
+ and v

μ
−, there are two equa-

tions in (25) with two unknown variables v
μ
+ and v

μ
−. We can

rewrite (25) in the form

v
μ
±(y) = −κ Θ

μν
± [ΔV (y)]

[
∂±yν ± 2β∓

ν [V (y)]
]
, (32)

where

Θ
μν
± [ΔV ] = − 2

κ

(
G−1

E [ΔV ] Π± [ΔV ] G−1
)μν

= θμν [ΔV ] ∓ 1

κ

(
G−1

E

)μν

[ΔV ], (33)

and G E
μν ≡ [

G − 4BG−1 B
]
μν

, θμν ≡ − 2
κ
(G−1

E BG−1)μν

are the open string background fields: the effective metric
and the non-commutativity parameter, respectively. Let us
note that the variables Gμν

E and θμν correspond to the new
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fields g̃ and β introduced by the field redefinition in [28,36].
The tensors Π∓μν and Θ

μν
± are connected by the relation

Θ
μν
± Π∓νρ = 1

2κ
δμ
ρ . (34)

We will solve (32) iteratively. Let us separate the variables
into two parts, as in [34]:

v
μ
± = v

(0)μ
± + v

(1)μ
± , yμ = y(0)

μ + y(1)
μ , (35)

where the index (0) denotes the finite part and the index (1)

the infinitesimal part (proportional to Bμνρ). In the zeroth
order, (32) reduce to

v
(0)μ
± (y) = −κ Θ

μν
0±∂±y(0)

ν , (36)

where

Θ
μν
0± = − 2

κ
(g−1Π0±G−1)μν = θ

μν
0 ∓ 1

κ
(g−1)μν, (37)

with gμν = Gμν − 4b2
μν and θ

μν
0 = − 2

κ
(g−1bG−1)μν . The

tensors Π0∓μν and Θ
μν
0± are connected by the relation

Π0∓μνΘ
νρ
0± = 1

2κ
δρ
μ, (38)

which is an analogue of (34) in the constant background case.
To explicitly express the background fields argument in

zeroth order V (0)μ, we introduce the new (double) variable
ỹμ in the zeroth order by

Δỹ(0)
μ = ỹ(0)

μ (ξ) − ỹ(0)
μ (ξ0) =

∫
P

dτ y(0)′
μ + dσ ẏ(0)

μ , (39)

where the line integral is independent of the choice of the path
P on the equation of motion. The double variable satisfies

˙̃y(0)
μ = y(0)′

μ , ỹ(0)′
μ = ẏ(0)

μ . (40)

Using the last relation and (36), we obtain

V (0)μ = −κ θ
μν
0 y(0)

ν + (g−1)μν ỹ(0)
ν . (41)

Comparing (22) with (32) where the background field
argument is taken in the zeroth order (41), we obtain the
T -dual transformation law of the variables

∂±xμ ∼= −κ Θ
μν
±

[
ΔV (0)

]
∂±yν ∓ 2κΘ

μν
0±β∓

ν

[
V (0)

]
. (42)

In a flat background for bμν = 0, we have ỹμ
∼= Gμνxν .

Therefore, the double variable ỹμ in this particular case turns
out to be related to xμ, the T -dual variable of yμ.

Substituting (32) and (41) into the action (19), we obtain
the T -dual action

�S [y]≡ Sfix [y]= κ2

2

∫
d2ξ ∂+yμΘ

μν
−

[
ΔV (0)(y)

]
∂−yν,

(43)

where we neglected the term β−
μ β+

ν as the infinitesimal of
the second order.

Comparing the initial action (7) with the T -dual one (43),
we see that they are equal under the following transforma-
tions:

∂±xμ → ∂±yμ, Π+μν [x] → κ

2
Θ

μν
−

[
ΔV (0)

]
, (44)

which implies

Gμν → �Gμν =
(

G−1
E

)μν [
ΔV (0)

]
,

Bμν [x] → �Bμν = κ

2
θμν

[
ΔV (0)

]
,

(45)

where (G−1
E )μν and θμν are introduced in (33) and

ΔV (0)μ(y) = −κθ
μν
0 Δy(0)

ν + (g−1)μνΔỹ(0)
ν . (46)

Let us underline that in the initial theory the metric tensor is
constant and the Kalb–Ramond field is linear in the coordi-
nates xμ. In the T -dual theory, both background fields depend
on ΔV μ, which is a linear combination of yμ and its dual ỹμ.
Note that the variable V μ and consequently the T -dual action
are not defined on the geometrical space (defined by the coor-
dinate yμ), but on the so-called doubled target space [17–28]
composed of both yμ and ỹμ. A similar procedure, using
the first-order Lagrangian, was applied to the flat space-time
long ago [37]. The result has the same form as (45), but it is
V -independent.

In Appendix A, the equation of motion for the T -dual
theory will be given explicitly. It will be shown that this
equation is equal to the equation of motion of the gauge-fixed
action after the elimination of the gauge fields as auxiliary
fields on their equation of motion.

5 The T -dual of the T -dual theory

Because the T -dual theory (43) is by construction physi-
cally equivalent to the initial one (7), we should expect that
the T -dual of the T -dual theory is just the initial theory. To
demonstrate this, we should first find the global symmetry of
the T -dual action. As can be seen from (19), the gauge-fixed
action, Sfix, is invariant under the global shift

δyμ = λμ = const. (47)

As the T -dual theory is equivalent to the gauge-fixed one,
it must have the same global symmetry. One can check that
this is indeed the symmetry of (43). Note that the action is
not invariant under the constant shift of the argument of Θ

μν
− ,

because, in contrast to the original action, the metric of the T -
dual theory �Gμν is not constant. Therefore, in comparison
with the original action, one cannot omit the constant part of
the argument V μ(ξ0), as we did at the end of the Sect. 4.1. But
the transformation (47) leaves the argument itself, ΔV μ =
V μ(ξ) − V μ(ξ0), unchanged and consequently the action
(43) is invariant too.
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5.1 Gauging the symmetry

Let us localize this symmetry and find the corresponding
locally invariant action. We covariantize the derivatives intro-
ducing the gauge fields u±μ

D±yμ = ∂±yμ + u±μ. (48)

Demanding δD±yμ = 0, we require that u±μ transform as

δu±μ = −∂±λμ(τ, σ ). (49)

The argument of the dual background fields ΔV μ is not
locally invariant. Thus, first we construct the invariant expres-
sions for the two variables yμ and ỹμ,

Δyinv
μ ≡

∫
P

dξα Dα yμ = Δyμ + ΔUμ,

Δỹinv
μ ≡

∫
P

dξαεβ
α Dβ yμ = Δỹμ + ΔŨμ,

(50)

where

Δyμ ≡
∫
P

dξα∂α yμ = yμ(ξ) − yμ(ξ0),

Δỹμ ≡
∫
P

dξαεβ
α∂β yμ,

(51)

and

ΔUμ ≡
∫
P

dξαuαμ, ΔŨμ ≡
∫
P

dξαεβ
αuβμ. (52)

Now, it is easy to find the generalization of the background
fields argument (45):

ΔV μ
inv ≡ −κθ

μν
0 Δyinv

ν + (g−1)μνΔỹinv
ν

= ΔV μ [y] + ΔV μ [U ], (53)

which is invariant by construction and will be considered
only in the zeroth order.

Finally, we can construct the dual invariant action

�Sinv = κ

2

∫
d2ξ

[
κ D+yμΘ

μν
− [ΔVinv] D−yν

+ u+μ∂−zμ − u−μ∂+zμ
]
, (54)

where the second term makes the gauge fields u±μ nonphys-
ical. The gauge fixing yμ(ξ) = yμ(ξ0) produces D±yμ =
u±μ and ΔV μ [y] = 0, so the action becomes

�Sfix
[
z, u±

] = κ

2

∫
d2ξ

[
κu+μΘ

μν
− [ΔV [U ]] u−ν

+ u+μ∂−zμ − u−μ∂+zμ
]
. (55)

5.2 Eliminating the Lagrange multiplier

The equation of motion with respect to the Lagrange multi-
plier zμ,

∂+u−μ − ∂−u+μ = 0, (56)

has the solution

u±μ = ∂±yμ, (57)

which substituted into (52) gives ΔUμ = Δyμ and therefore
ΔV μ [U ] = ΔV μ [y]. Thus, substituting (57) into the action
(55), it becomes

�Sfix
[
u± = ∂±y

] = κ2

2

∫
d2ξ∂+yμΘ

μν
− [ΔV [y]] ∂−yν

(58)

and coincides with the T -dual action (43).
Let us stress that we cannot omit V (ξ0), because, as we

have discussed at the beginning of this section, the T -dual
action is invariant under a constant shift in the coordinate yμ,
but it is not invariant under a constant shift of the argument
of the background fields.

5.3 Eliminating the gauge fields

Using the fact that

Θ
μν
± (x) = Θ

μν
0± − 2κ

[
Θ0±h(x)Θ0±

]μν
, (59)

we find that the equations of motion for the gauge fields,
obtained by varying the action (55) with respect to the gauge
fields u±μ, are

∂±zμ = −κΘ
μν
± [ΔV (U )]

[
u±ν ± 2β∓

ν [V (U )]
]
. (60)

Note that Θ
μν
± depends on ΔV μ(U ), while βν depends on

V μ(U ). Using the relation (34), we can extract u±μ:

u±μ = −2Π∓μν [ΔV (U )] ∂±zν ∓ 2β∓
μ [V (U )]. (61)

As in Sect. 4.2, we can separate the variables u±μ into finite
and infinitesimal parts. In the zeroth order, (61) reduce to

u(0)
±μ = −2Π0∓μν∂±z(0)ν . (62)

Therefore, the zeroth order values of Uμ and Ũμ are

U (0)
μ = −2bμνz(0)ν + Gμν z̃(0)ν,

Ũ (0)
μ = −2bμν z̃(0)ν + Gμνz(0)ν,

(63)

and this yields

V (0)μ(U (0)) = (g−1)μν
[
2b ρ

ν U (0)
ρ + Ũ (0)

ν

]
= z(0)μ, (64)

and consequently β±
μ

[
V (0)(U )

] = β±
μ

[
z(0)

]
. Substituting

(64) into (61), we obtain its solution

u±μ = −2Π∓μν

[
Δz(0)

]
∂±zν ∓ 2β∓

μ

[
z(0)

]
, (65)
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with Δz(0)μ = z(0)μ(ξ)− z(0)μ(ξ0). Comparing it with (57),
we find the T -duality transformation law of the variables

∂±yμ
∼= −2Π∓μν

[
Δz(0)

]
∂±zν ∓ 2β∓

μ

[
z(0)

]
. (66)

Note that this is the inverse transformation of (42). More
precisely, substituting ∂±yμ from (66) into (42) and using
(64), which is a consequence of the zeroth order of (66), one
obtains ∂±xμ = ∂±zμ.

Substituting (65) into the action (55), we obtain the action

�Sfix [z] = κ

∫
d2ξ∂+zμΠ+μν [z(ξ) − z(ξ0)] ∂−zν, (67)

which is invariant under the global shift in the coordinate (as
seen in Sect. 3). Thus, we can omit the term z(ξ0) and obtain
the T -dual of the T -dual action:

��S [z] ≡ �Sfix [z] = κ

∫
d2ξ∂+zμΠ+μν [z] ∂−zν, (68)

which is in fact the initial action. So, the second T -duality
turns the doubled target space (yμ, ỹμ) back to the conven-
tional space zμ.

Similarly to the derivation in Appendix A, one can show
that the equation of motion of the T -dual of the T -dual action
(original action) (68) is the same as the equation of motion
of the gauge-fixed action (55) after elimination of the gauge
fields using their equations of motion

∂+∂−zμ − Bμ
νρ∂+zν∂−zρ = 0. (69)

6 The features of the T -duality

There are two important features of the T -duality which we
will consider here. First, the momentum and the winding
numbers of the original theory are equal to the winding and
the momentum numbers of the T -dual theory, respectively.
Second, the equation of motion and the Bianchi identity of
the original theory are equal to the Bianchi identity and the
equation of motion of the T -dual theory [34,37,38]. Thus,
T -duality interchanges momentum and winding numbers, as
well as the equations of motion and the Bianchi identities.
Because in our case, the action is invariant up to total diver-
gences, the conserved charges may in general differ from the
corresponding momenta.

6.1 T -dualities in terms of the conserved currents
and charges

We will discuss the above-mentioned features by investi-
gating the Noether and the topological currents and their
charges. As a consequence of the global shift invariance of
the action (7), there exist conserved Noether currents,

∂α jαμ = 0, (70)

of the form

jαμ = κ
[(

ηαβGμν + 2εαβ Bμν [x]
)
∂β xν − βα

μ [x]
]
, (71)

where βα
μ is defined in (30). In the light-cone coordinates,

they have the form j±μ = 1
2 ( j0

μ ± j1
μ)

j±μ = ±κΠ±μν [x] ∂∓xν − κβ±
μ [x]. (72)

The current conservation equation ∂+ j+μ + ∂− j−μ = 0 is in
fact the equation of motion of the original theory,

∂+∂−xμ − Bμ
νρ∂+xν∂−xρ = 0. (73)

Let us now turn to the T -dual description. As the conse-
quence of (66), one has

jαμ ∼= �iαμ = −κεαβ∂β yμ, (74)

where �iαμ is the topological current, because

∂α
�iαμ = 0 (75)

is the Bianchi identity. Thus, T -duality relates the conserva-
tion of the Noether and the topological current laws, which
are in fact the equations of motion and the Bianchi identities.

Note that, from (71) and (74), for α = 0 one has

πμ − κβ0
μ [x] ∼= κy′

μ, (76)

where πμ is the canonical momentum corresponding to the
variable xμ,

πμ = κ
(
Gμν ẋν − 2Bμν [x] x ′ν). (77)

The charges associated with the conserved currents (71),

Qμ =
π∫

−π

dσ j0
μ =

π∫
−π

dσ
[
πμ − κβ0

μ

]
, (78)

in general could differ from the momentum quantum num-
bers (Kaluza–Klein modes). The difference is the infinites-
imal part of the momenta. Its mode expansion corresponds
to the expressions (3.21) and (3.22) of [34]. In the particu-
lar case when the string is curled up around only one com-
pactified dimension, i.e. xi = cσ, x j = 0, j �= i , one has
β0

μ = 0, because of the antisymmetry of Bμνρ . Then the
conserved charges turn to momentum quantum numbers.

The charge corresponding to the conserved topological
current,

�qμ =
π∫

−π

dσ �i0
μ = κ

π∫
−π

dσ y′
μ, (79)

is just the winding number of the T -dual theory. As a con-
sequence of (76), the Noether charges transform under T -
duality into the topological charges

Qμ
∼= �qμ. (80)
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For β0
μ = 0, this just describes the fact that T -duality trans-

forms the momenta numbers of the initial theory into the
winding numbers of the T -dual theory.

Because the T -dual of the T -dual theory is the original
theory, we can apply the same procedure in the other direc-
tion. From (43), we obtain the T -dual Noether currents

� jαμ = κ
[(

ηαβ
(

G−1
E

)μν

[ΔV ] + κεαβθμν [ΔV ]
)

∂β yν

− (g−1)μνεα
βββ

ν [V ] − κθ
μν
0 βα

ν [V ]
]
. (81)

In light-cone coordinates, one has

� j±μ = ±κ2

2
Θ

μν
∓ [ΔV ]

[
∂∓yν ∓ 2β±

ν [V ]
]
. (82)

The conservation law for the T -dual current

∂+ � j+μ + ∂− � j−μ = 0 (83)

is just the equation of motion in the T -dual theory

∂+
[
Θ

μν
− [ΔV ] ∂−yν − 2Θ

μν
0−β+

ν [V ]
]

−∂−
[
Θ

μν
+ [ΔV ] ∂+yν + 2Θ

μν
0+β−

ν [V ]
] = 0. (84)

T -duality according to (42) transforms Noether currents
of the T -dual theory to the topological currents of the original
theory (formally to the topological currents of the T -dual of
the T -dual theory):

� jαμ ∼= iαμ = −κεαβ∂β xμ. (85)

The conservation of the topological currents ∂αiαμ = 0 are
just the Bianchi identities. From (81) and (85) for α = 0, it
follows that

�πμ − κ2θ
μν
0 β0

ν [V ] ∼= κx ′μ, (86)

where �πμ is the canonical momentum in the T -dual theory:

�πμ = κ
(

G−1
E

)μν

[ΔV [y]] ẏν − κ2θμν [ΔV [y]] y′
ν

−κ(g−1)μνβ1
ν [V [y]]. (87)

The conserved charges of the dual Noether and the original
topological currents for βα

μ = 0

�Qμ =
π∫

−π

dσ � j0μ =
π∫

−π

dσ �πμ,

qμ =
π∫

−π

dσ i0μ = κ

π∫
−π

dσ x ′μ,

(88)

are momentum modes of the dual theory and the winding
modes of the original theory. They are also, according to
(86), connected by the T -duality transformation

�Qμ ∼= qμ. (89)

In the following tables, we summarize the relations
obtained: a T -duality transformation relates the Noether cur-
rents with the topological ones; the corresponding conser-
vation laws relate the equations of motion with Bianchi
identities, while the corresponding Noether charges relate
momenta and winding modes.

7 Conclusion

In this paper, we consider the closed bosonic string moving
in a weakly curved background. This background is defined
by a constant space-time metric and a Kalb–Ramond field
linear in the coordinates, where the coordinate dependence
is infinitesimally small. With such a choice, the space-time
equations of motion are satisfied. The aim of the paper was
to investigate the T -dual theory in a curved background.

Earlier, in a number of papers, similar topics, restricted
to the string in a flat background, were discussed. In these
papers, the prescriptions for the construction of the T -dual
theories were established. Here, we present the generaliza-
tion of the covariant Buscher construction.

In Buscher’s construction, one starts with the sigma model
constructed from background fields G, B, Φ which do not
depend on some coordinates xa . Thus, the corresponding
abelian isometries leave the action invariant. We started with
the sigma model in a weakly curved background. We found
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that the action still has the global symmetry δxμ = λμ =
const, even though the background fields depend on these
coordinates. Therefore, we gauged it in the usual way by
introducing the gauge fields v

μ
α , replacing the derivatives

∂αxμ with the covariant ones. In our case, this was not suf-
ficient to construct the invariant action, because the back-
ground field Bμν depends on xμ, which is not gauge invari-
ant. The essential new step in our gauging prescription is
the introduction of the invariant coordinate, as the line inte-
gral (primitive) of its covariant derivatives. This kind of
coordinate enables local invariance. It remains to find to
which class of backgrounds this generalized procedure can be
applied.

As usual, for the T -dual theory to be physically equiv-
alent to the original theory, one had to eliminate all the
degrees of freedom carried by the gauge fields. This was
achieved by adding the Lagrange multiplier term yμFμ

01 to
the Lagrangian. At this point, we fixed the gauge. The action
obtained in this way reduced to the initial one on the equa-
tions of motion for the Lagrange multiplier yμ.

The Lagrange multiplier term yμFμ
01 guarantees that the

gauge field is closed (dv = 0), but one should consider
the topological contribution as well. Because of this, an
additional investigation of the holonomies of v should be
performed. To solve these problems, connected with the
global structure of the theory, following [11,12,15,38,39]
we will consider the quantum theory in some of our further
papers.

For the solution of the equations of motion of the gauge
fields, one obtains the T -dual action. In the case of a flat
background, the T -dual action was given in terms of the T -
dual variable, which turned out to be the Lagrange multiplier
itself. In the weakly curved case, the T -dual action is defined
in the doubled space given in terms of the Lagrange multiplier
and its T -dual in the flat space. The dual background fields
depend on ΔV μ, a linear combination of these variables.

Starting from the T -dual action and following the T -dual
prescription that we proposed, we obtained the initial one.
The fact that we succeeded in finding the rules for obtaining
the T -dual theory from the initial one in a weakly curved
background and the inverse rules allowed us to treat the two
main features of T -duality. These are: the T -duality relates
the original and the T -dual theory, by mapping the momen-
tum numbers of one theory with the winding numbers of the
other, and the equations of motion of one with the Bianchi
identities of the other.

Starting with the initial theory and its global shift invari-
ance, we found the conserved Noether currents jαμ . The cur-
rent conservation laws ∂α jαμ = 0 are in fact the equations of
motion, and the associated charges Qμ = ∫ π

−π
dσ j0

μ = Pμ

are momentum numbers. The T -duals of the Noether cur-
rents are the topological currents �iαμ of the T -dual theory.

Their conservation laws ∂α
�iαμ = 0 are in fact Bianchi

identities and the associated charges �qμ = ∫ π

−π
�i0

μ =
�Wμ are the winding numbers. Thus, T -duality relates the
equations of motion with the Bianchi identities and the
momentum with the winding modes. Analogously, start-
ing with the T -dual action and its global symmetry, we
found that the Noether currents and their associated charges
(dual momentum numbers) correspond to the topological
currents of the initial theory and theirs charges (winding
numbers).

Acknowledgments Work supported in part by the Serbian Ministry
of Education, Science and Technological Development, under contract
No. 171031.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Article funded by SCOAP3 and licensed under CC BY 4.0

Appendix A: T -dual equation of motion

Let us demonstrate that the T -dual equation of motion can
be obtained from both the T -dual action (43) and the gauge
fixed action (19). The T -dual action depends on yμ, so there
is one equation of motion which depends on yμ. On the other
hand, the gauge-fixed action beside yμ depends on the gauge
fields v

μ
± as well. Treating v

μ
± as auxiliary fields, we will use

their equations of motion to eliminate them from the third
equation and obtain an yμ dependent equation.

Appendix A.1: The equation of motion for the gauge-fixed
action

Let us find the equations of motion for the gauge-fixed action
(19). This will be done iteratively. The equations of motion,
obtained varying the action over the finite parts (v

(0)μ
± , y(0)

μ )

introduced in (35), contain both finite and infinitesimal parts.
The finite part of these equations is

Π0+μνv
(0)ν
− + 1

2
∂−y(0)

μ = 0, (90a)

Π0−μνv
(0)ν
+ + 1

2
∂+y(0)

μ = 0, (90b)

∂+v
(0)μ
− − ∂−v

(0)μ
+ = 0. (90c)

The equations of motion obtained varying over the infinites-
imal parts, (v

(1)μ
± , y(1)

μ ), are identical to (90a)–(90c). Equa-
tion (90c) guarantees that (16) in the zeroth order does not
depend on the choice of the path P . Therefore, we can
write

ΔV (0)μ = V (0)μ(ξ) − V (0)μ(ξ0) (91)
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and

∂αV (0)μ = v(0)μ
α . (92)

The solution of (90a) and (90b) is

v
(0)μ
± (y) = −κ Θ

μν
0±∂±y(0)

ν , (93)

where Θ
μν
0± is defined in (37). Using the zeroth order value

of V μ, we can rewrite (93) as

v
(0)μ
± (y) = ∂±V (0)μ(y),

V (0)μ = −κ θ
μν
0 y(0)

ν + (g−1)μν ỹ(0)
ν .

(94)

Let us now turn to the infinitesimal part of the equations of
motion obtained varying Sfix by the finite parts (v

(0)μ
± , y(0)

μ ).
They are equal to

hμν

[
ΔV (0)

]
v

(0)ν
− + Π0+μνv

(1)ν
− + 1

2
∂−y(1)

μ

= β+
μ

[
V (0)

]
, (95a)

hμν

[
ΔV (0)

]
v

(0)ν
+ + Π0−μνv

(1)ν
+ + 1

2
∂+y(1)

μ

= −β−
μ

[
V (0)

]
, (95b)

∂+v
(1)μ
− − ∂−v

(1)μ
+ = 0. (95c)

Solving the first two equations, with the help of (36) and (38),
we get

v
(1)μ
± = −κΘ

μν
0±∂±y(1)

ν − κΘ
μν
1±

[
ΔV (0)

]
∂±y(0)

ν

∓2κΘ
μν
0±β∓

ν

[
V (0)

]
, (96)

where

Θ
μν
1± [x] = −2κΘ

μρ
0±hρσ [x] Θσν

0±. (97)

So, the solution for v
μ
± is just (32)

v
μ
± [y] = −κ Θ

μν
±

[
ΔV (0)

]
∂±yν ∓ 2κΘ

μν
0±β∓

ν

[
V (0)

]
, (98)

where Θ
μν
± , defined in (33), is the inverse of Π±μν (see the

relation (34)).
Finally, (90c) and (95c) produce ∂+v

μ
− − ∂−v

μ
+ = 0. On

the solution (98), this equation becomes

∂+
[
Θ

μν
−

[
ΔV (0)

]
∂−yν − 2Θ

μν
0−β+

ν

[
V (0)

]]
−∂−

[
Θ

μν
+

[
ΔV (0)

]
∂+yν + 2Θ

μν
0+β−

ν

[
V (0)

]] = 0. (99)

This is the equation of motion of the T -dual theory.

Appendix A.2: The equation of motion for the T -dual action

Again, we will find the equations of motion iteratively. Vari-
ation of the T -dual action (43) with respect to yμ produces
in the zeroth order

∂+∂−y(0)
μ = 0. (100)

By this equation, Δỹμ becomes path independent and we
have ∂±V (0)μ = −κΘ

μν
0±∂±yν . Variation by V μ, with the

help of (97), gives

δV
�S

= κ2
∫

dξ2[Θμν
0−∂+β+

ν

[
V (0)

] + Θ
μν
0+∂−β−

ν

[
V (0)

]]
δyμ,

(101)

where theβ±
μ are defined in (26) and so the equation of motion

for yμ is indeed (99).
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