Skip to main content
Log in

On explicit thermodynamic functions and extremal limits of Myers–Perry black holes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study thermodynamic geometries of Myers–Perry (MP) black holes with arbitrary number of angular momenta. This geometric method allows us to visualize thermodynamic state spaces of the MP black holes as wedges embedded in a Minkowski-like parameter space. The opening angles of these wedges are uniquely determined by the number of spacetime dimensions d, and the number of angular momenta associated with the MP black holes, n. The geometric structure captures extremal limits of the MP black holes, and hence serves as a method for identifying the black hole’s extremal limit. We propose that classification of the MP black hole solutions should based on these uncovered structures. In order for the ultraspinning regime to exist, at least one of the angular momenta has to be set to zero. Finally, we conjecture that the membrane phase of ultraspinning MP black holes is reached at the minimum temperature in the case where 2n<d−3 based on the thermodynamic curvature obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For a comprehensive review on black hole thermodynamic geometries we refer the reader to e.g. [20] and references therein.

  2. In order to study the Ruppeiner and Weinhold thermodynamic geometries one needs explicit functions of entropy or mass, therefore our list of formulas can potentially be useful for further investigations where explicit formulas are required.

  3. Extremal black holes are those with vanishing temperature (because surface gravity is zero in the extremal limit). According to thermodynamics and statistical mechanics such black holes do not radiate thermally, even though there exists vacuum energy which is the zero-point energy of all the fields in space.

  4. Thermodynamic geometry is a particular type of information geometry. This field is the study of probability distributions and information by means of differential geometry.

  5. This point is sometimes referred to as Davies point, but it does not correspond to a phase transition of black holes. The change of phase of MP black holes has no relation to the divergence of the specific heat.

  6. In this case the singularities are associated with phase transitions.

  7. In the Poincaré turning point method the vertical tangent in the conjugacy diagram indicates change(s) of stability whereas nothing special concerning stability is expected along at the vertical tangent.

  8. There have been modifications of the Ruppeiner/Weinhold geometric method by Quevedo and his group [33]. The modified metric is now referred to as the Quevedo metric. For discussions on the suitability of this metric we refer the reader to [34].

  9. Here n denotes the number of angular momenta and d the number of dimensions.

References

  1. R.C. Myers, M.J. Perry, Ann. Phys. (N.Y.) 172, 304 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. R. Emparan, H.S. Reall, Living Rev. Relativ. 11, 6 (2008). arXiv:0801.3471 [hep-th]

    ADS  Google Scholar 

  3. R. Emparan, H.S. Reall, Phys. Rev. Lett. 88, 101101 (2002). arXiv:hep-th/0110260

    Article  MathSciNet  ADS  Google Scholar 

  4. H. Elvang, P. Figueras, J. High Energy Phys. 0705, 050 (2007). arXiv:hep-th/0701035

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Iguchi, T. Mishima, Phys. Rev. D 75, 064018 (2007). arXiv:hep-th/0701043 [Erratum-ibid. D 78, 069903 (2008)]

    Article  MathSciNet  ADS  Google Scholar 

  6. J. Evslin, C. Krishnan, Class. Quantum Gravity 26, 125018 (2009). arXiv:0706.1231 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  7. K. Izumi, Prog. Theor. Phys. 119, 757 (2008). arXiv:0712.0902 [hep-th]

    Article  ADS  MATH  Google Scholar 

  8. H. Elvang, M.J. Rodriguez, J. High Energy Phys. 0804, 045 (2008). arXiv:0712.2425 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  9. R. Gregory, R. Laflamme, Phys. Rev. Lett. 70, 2837 (1993). arXiv:hep-th/9301052

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. T. Harmark, V. Niarchos, N.A. Obers, Class. Quantum Gravity 24, R1 (2007). arXiv:hep-th/0701022

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M.J. Rodríguez, in Proc. of the Twelfth Marcel Grossmann Meeting on General Relativity (World Scientific, Singapore, 2012), p. 523. arXiv:1003.2411

    Chapter  Google Scholar 

  12. R. Emparan, R.C. Myers, J. High Energy Phys. 0309, 025 (2003). arXiv:hep-th/0308056

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Emparan, T. Harmark, V. Niarchos, N.A. Obers, M.J. Rodríguez, J. High Energy Phys. 0710, 110 (2007). arXiv:0708.2181 [hep-th]

    Article  ADS  Google Scholar 

  14. K. Murata, J. Soda, Prog. Theor. Phys. 120, 561 (2008). arXiv:0803.1371 [hep-th]

    Article  ADS  MATH  Google Scholar 

  15. O.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos, R. Emparan, Phys. Rev. D 80, 111701 (2009). arXiv:0907.2248 [hep-th]

    Article  ADS  Google Scholar 

  16. O.J.C. Dias, P. Figueras, R. Monteiro, H.S. Reall, J.E. Santos, J. High Energy Phys. 1005, 076 (2010). arXiv:1001.4527 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  17. O.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos, Phys. Rev. D 82, 104025 (2010). arXiv:1006.1904 [hep-th]

    Article  ADS  Google Scholar 

  18. O.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos, J. High Energy Phys. 1012, 067 (2010). arXiv:1011.0996 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Bouhmadi-Lopez, V. Cardoso, A. Nerozzi, J.V. Rocha, Phys. Rev. D 81, 084051 (2010). arXiv:1003.4295 [gr-qc]

    Article  ADS  Google Scholar 

  20. N. Pidokrajt, Information geometries in black hole physics. Ph.D. Thesis, Department of Physics, Stockholm University, Sweden (2009)

  21. J.E. Åman, N. Pidokrajt, Phys. Rev. D 73, 024017 (2006). arXiv:hep-th/0510139

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Bellucci, B.N. Tiwari, J. High Energy Phys. 1101, 118 (2011). arXiv:1010.1427 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  23. Z.Z. Ma, Class. Quantum Gravity 26, 135003 (2009)

    Article  ADS  Google Scholar 

  24. P. Figueras, H.K. Kunduri, J. Lucietti, M. Rangamani, Phys. Rev. D 78, 044042 (2008). arXiv:0803.2998 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Ruppeiner, Rev. Mod. Phys. 67, 605 (1995). [Erratum-ibid. 68, 313 (1996)]

    Article  MathSciNet  ADS  Google Scholar 

  26. N. Pidokrajt, Information geometries in black hole physics. Ph.D. Thesis, Stockholm University, Sweden (2009)

  27. D.C. Brody, D.W. Hook, J. Phys. A 42, 023001 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  28. G. Arcioni, E. Lozano-Tellechea, Phys. Rev. D 72, 104021 (2005). arXiv:hep-th/0412118

    Article  MathSciNet  ADS  Google Scholar 

  29. S.W. Hawking, D.N. Page, Commun. Math. Phys. 87, 577 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  30. P.C.W. Davies, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 353, 499 (1977)

    Article  ADS  Google Scholar 

  31. J. Louko, S.N. Winters-Hilt, Phys. Rev. D 54, 2647 (1996). arXiv:gr-qc/9602003

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Phys. Rev. D 60, 104026 (1999). arXiv:hep-th/9904197

    Article  MathSciNet  ADS  Google Scholar 

  33. H. Quevedo, Gen. Relativ. Gravit. 40, 971 (2008). arXiv:0704.3102 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. A.J.M. Medved, Mod. Phys. Lett. A 23, 2149 (2008). arXiv:0801.3497 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. J.E. Åman, I. Bengtsson, N. Pidokrajt, Gen. Relativ. Gravit. 38, 1305 (2006). arXiv:gr-qc/0601119

    Article  ADS  MATH  Google Scholar 

  36. S.W. Wei, Y.X. Liu, C.E. Fu, H.T. Li, Adv. High Energy Phys. 2013, 734138 (2013). arXiv:0911.0270

    MathSciNet  Google Scholar 

  37. S. Bellucci, B.N. Tiwari, J. High Energy Phys. 1005, 023 (2010). arXiv:0910.5314

    Article  MathSciNet  ADS  Google Scholar 

  38. Y.H. Wei, Phys. Rev. D 80, 024029 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  39. R. Biswas, S. Chakraborty, Astrophys. Space Sci. 326, 39 (2010). arXiv:0905.1801 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  40. S. Chakraborty, T. Bandyopadhyay, Class. Quantum Gravity 25, 245015 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  41. S. Bellucci, V. Chandra, B.N. Tiwari, arXiv:0812.3792 [hep-th]

  42. L.Á. Gergely, N. Pidokrajt, S. Winitzki, arXiv:0811.1548 [gr-qc]

  43. T. Sarkar, G. Sengupta, B.N. Tiwari, J. High Energy Phys. 0810, 076 (2008). arXiv:0806.3513 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  44. Y.S. Myung, Y.W. Kim, Y.J. Park, Phys. Lett. B 663, 342 (2008). arXiv:0802.2152 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  45. G. Ruppeiner, Phys. Rev. D 78, 024016 (2008). arXiv:0802.1326 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  46. A.J.M. Medved, Mod. Phys. Lett. A 23, 2149 (2008). arXiv:0801.3497 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. J.L. Álvarez, H. Quevedo, A. Sánchez, Phys. Rev. D 77, 084004 (2008). arXiv:0801.2279 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  48. J.E. Åman, N. Pidokrajt, EAS Publ. Ser. 30, 269 (2008). arXiv:0801.0016 [gr-qc]

    Article  Google Scholar 

  49. H. Quevedo, A. Vázquez, AIP Conf. Proc. 977, 165 (2008). arXiv:0712.0868 [math-ph]

    Article  ADS  Google Scholar 

  50. J.E. Åman, N. Pidokrajt, J. Ward, EAS Publ. Ser. 30, 279 (2008). arXiv:0711.2201 [hep-th]

    Article  Google Scholar 

  51. B. Mirza, M. Zamani-Nasab, J. High Energy Phys. 0706, 059 (2007). arXiv:0706.3450 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  52. J.E. Åman, J. Bedford, D. Grumiller, N. Pidokrajt, J. Ward, J. Phys. Conf. Ser. 66, 012007 (2007). arXiv:gr-qc/0611119

    Article  ADS  Google Scholar 

  53. S. Wang, S.Q. Wu, F. Xie, L. Dan, Chin. Phys. Lett. 23, 1096 (2006). arXiv:hep-th/0601147

    Article  ADS  Google Scholar 

  54. J.y. Shen, R.G. Cai, B. Wang, R.K. Su, Int. J. Mod. Phys. A 22, 11 (2007). arXiv:gr-qc/0512035

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. D.A. Johnston, W. Janke, R. Kenna, Acta Phys. Pol. B 34, 4923 (2003). arXiv:cond-mat/0308316

    MathSciNet  ADS  MATH  Google Scholar 

  56. D. Astefanesei, M.J. Rodriguez, S. Theisen, J. High Energy Phys. 1008, 046 (2010). arXiv:1003.2421 [hep-th]

    Article  ADS  Google Scholar 

  57. H.K. Kunduri, J. Lucietti, H.S. Reall, Phys. Rev. D 74, 084021 (2006). arXiv:hep-th/0606076

    Article  MathSciNet  ADS  Google Scholar 

  58. J.E. Åman, Manual for CLASSI: classification programs for geometries in general relativity. Technical Report, Provisional edition. Distributed with the sources for SHEEP and CLASSI. Department of Physics, Stockholm University (2002)

  59. J.E. Åman, I. Bengtsson, N. Pidokrajt, Gen. Relativ. Gravit. 35, 1733 (2003). arXiv:gr-qc/0304015

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

Narit Pidokrajt acknowledges the KoF group, Fysikum, Stockholms Universitet for the warm hospitality, in particular to Hans Hansson for lending him a nice computer screen. NP would also like to thank the Royal Swedish Academy of Sciences (KVA) for supporting this project through the grant FOA10V-116. We kindly thank Ingemar Bengtsson for his enlightening and many useful comments, and acknowledge Gary Gibbons for giving us some useful information. NP would like to thank Roberto Emparan for stimulating discussions on MP black holes with equal spins while he was a visitor in Barcelona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narit Pidokrajt.

Appendices

Appendix A: The MP black hole solution

The MP solutions have to be treated separately depending on whether the number of dimensions is odd or even. The black holes have (d−1)/2 angular momenta if d is odd and (d−2)/2 if d is even. The multiple-spin Kerr black hole’s metric in Boyer–Lindquist coordinates for odd d is given by

$$\begin{aligned} ds^2 & = -d\bar{t}^2 + \sum_{i=1}^N \bigl(r^2 + a^2_i\bigr) \bigl(d \mu^2_i + \mu^2_i\, d\bar{ \phi}^2_i\bigr) \\ &\quad {} +\frac{m r^2}{\varPi F}\Biggl(d\bar{t} + \sum _{i=1}^N a_i \mu^2_i\, d\bar{\phi}_i\Biggr)^2 + \frac{\varPi F}{\varPi- m r^2}\,dr^2, \end{aligned}$$
(A.1)

with the constraint

$$\begin{aligned} & F = 1 - \sum_{i=1}^N \frac{a^2_i \mu^2_i}{r^2 + a^2_i}, \end{aligned}$$
(A.2)
$$\begin{aligned} & \sum_{i=1}^N \mu^2_i = 1, \end{aligned}$$
(A.3)

where m is mass parameter, μ i are directional cosines, and a i are parameters. The function Π is defined as follows:

$$ \varPi= \prod_{i=1}^{(d-1)/2} \bigl(r^2 + a^2_i\bigr). $$
(A.4)

The metric is slightly modified for even d. The event horizons in the Boyer–Lindquist coordinates occur where g rr=1/g rr vanishes. They are the largest roots of

$$\begin{aligned} & \varPi- m r = 0 \quad \text{even }d \end{aligned}$$
(A.5)
$$\begin{aligned} & \varPi- m r^2 = 0 \quad \text{odd }d. \end{aligned}$$
(A.6)

The areas of the event horizon are given by

$$\begin{aligned} A & = \frac{\varOmega_{(d-2)}}{r_+} \prod_i \bigl(r^2_+ + a^2_i\bigr) \quad \text{odd }d, \end{aligned}$$
(A.7)
$$\begin{aligned} A& = \varOmega_{(d-2)} \prod_i \bigl(r^2_+ + a^2_i\bigr) \quad \text{even }d. \end{aligned}$$
(A.8)

In d=5 there can be only two angular momenta associated with the Kerr black hole, thus the area of the event horizon reads

$$ A = \frac{2\pi^2}{r_+} \bigl(r^2_+ + a_1^2 \bigr) \bigl(r^2_+ + a^2_2\bigr). $$
(A.9)

The Bekenstein–Hawking entropy is given by \(S= \frac {k_{B} A}{4G}\), and we can choose \(k_{B} = \frac{1}{\pi}\) and \(G = \frac {\varOmega_{(d-2)}}{4\pi}\) so that the Bekenstein–Hawking entropy for the MP black holes is simplified as

$$\begin{aligned} & S = \frac{1}{r_+} \prod_i \bigl(r^2_+ + a^2_i\bigr) \quad \text{odd }d, \end{aligned}$$
(A.10)
$$\begin{aligned} & S = \prod_i \bigl(r^2_+ + a^2_i\bigr) \quad \text{even }d. \end{aligned}$$
(A.11)

Appendix B: Extremal limits in multi-coordinates with all nonzero spin J equal

If 2nd−3 there will be an extremal limit at

$$ \frac{S}{J} \bigg|_{\mathrm{extr}} = 2 \sqrt{\frac{2n-d+3}{d-3}} . $$
(B.1)

This limit exists for 2n>d−3, which can be expressed in (M,S) coordinates as

$$ \frac{S^{d-3}}{M^{d-2}} \bigg|_{\mathrm{extr}} = \frac{2^{2d-n-4} (2n-d+3)^n}{ (d-2)^{d-2}n^n} $$
(B.2)

or in (M,J) coordinates

$$ \frac{J^{d-3}}{M^{d-2}} \bigg|_{\mathrm{extr}} = \frac{2^{d-n-1} (2n-d+3)^{\frac {2n-d+3}{2}}(d-3)^{\frac{d-3}{2}}}{(d-2)^{d-2}n^n} . $$
(B.3)

For the case 2n=d−3 case (requiring odd d) we have S ext =0 and

$$ \frac{J^{d-3}}{M^{d-2}} \bigg|_{\mathrm{extr}} = \frac{2^{d-1}}{(d-2)^{d-2}} . $$
(B.4)

For even d with all \(n = \frac{d}{2} -1\) spins we can also express

$$ \frac{S}{ J} \bigg|_{\mathrm{extr}} = \frac{2}{\sqrt{d-3}}, $$
(B.5)

and

$$ \frac{J^{d-3}}{M^{d-2}} \bigg|_{\mathrm{extr}} = \frac{2^{d-1} (d-3)^{\frac {d-3}{2}}}{(d-2)^{\frac{3(d-2)}{2}}} . $$
(B.6)

For odd d with all \(n = \frac{d-1}{2}\) spins we have

$$ \frac{S}{ J} \bigg|_{\mathrm{extr}} = \frac{2\sqrt{2}}{\sqrt{d-3}}, $$
(B.7)

and

$$ \frac{J^{d-3}}{M^{d-2}} \bigg|_{\mathrm{extr}} = \frac{2^d (d-3)^{\frac{d-3}{2}}}{ (d-2)^{d-2} (d-1)^{\frac{d-1}{2}}}. $$
(B.8)

The Schwarzschild limit is when J=0 and this sets a physical bound to be

$$ \frac{S^{d-3}}{M^{d-2}} \leq \frac{4^{d-2}}{(d-2)^{d-2}}. $$
(B.9)

In Table 3 we present extremal limits in various coordinates.

Table 3 Extremal limits of MP black holes in various coordinates for all nonzero equal spins

Appendix C

We extend our discussion on the opening angles of the Weinhold metrics here with two subcases:

The subcase 2n=d−2

This applies to even dimensions, 4 with 1 spin, 6 with 2 spins etc. Here the transformation from u to σ is

$$ \sigma= \frac{1}{2} \biggl( \text{arcsinh}\frac{2 u}{\sqrt{d-3}} +\sqrt{d-4} \arctan\frac{2\sqrt{d-4} u}{\sqrt{d-3+4u^2}} \biggr). $$
(C.1)

Here we have \(u_{\mathrm{extr}} = \frac{\sqrt{d-3}}{2}\) which gives

$$ \sigma_{\mathrm{extr}} = \frac{1}{2} \biggl( \text{arcsinh}1 +\sqrt {d-4} \arctan \frac{\sqrt{d-4}}{\sqrt{2}} \biggr). $$
(C.2)

The subcase 2n=d−1

This applies to dimension 5 with 2 spin, dimension 7 with 3 spins etc. Here the transformation is

$$\begin{aligned} \sigma& = \frac{\sqrt{d-1}}{\sqrt{2}\sqrt{d-2}} \biggl( \text {arcsinh}\frac{2\sqrt{2} u}{\sqrt{d-3}} \\ &\quad {} + \frac{\sqrt{d-5}}{\sqrt{2}} \arctan\frac{2\sqrt{d-5} u}{\sqrt {d-3+8u^2}} \biggr). \end{aligned}$$
(C.3)

In this case \(u_{\mathrm{extr}} = \frac{\sqrt{d-3}}{2\sqrt{2}}\) so we obtain

$$ \sigma_{\mathrm{extr}} = \frac{\sqrt{d-1}}{\sqrt{2}\sqrt{d-2}} \biggl( \text{arcsinh}1 + \frac{\sqrt{d-5}}{\sqrt{2}} \arctan\frac{\sqrt{d-5}}{2} \biggr). $$
(C.4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Åman, J.E., Pidokrajt, N. On explicit thermodynamic functions and extremal limits of Myers–Perry black holes. Eur. Phys. J. C 73, 2601 (2013). https://doi.org/10.1140/epjc/s10052-013-2601-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2601-9

Keywords

Navigation