Skip to main content
Log in

Isotropic stars in general relativity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present a general solution of the Einstein gravitational field equations for the static spherically symmetric gravitational interior space-time of an isotropic fluid sphere. The solution is obtained by transforming the pressure isotropy condition, a second order ordinary differential equation, into a Riccati type first order differential equation, and using a general integrability condition for the Riccati equation. This allows us to obtain an exact non-singular solution of the interior field equations for a fluid sphere, expressed in the form of infinite power series. The physical features of the solution are studied in detail numerically by cutting the infinite series expansions, and restricting our numerical analysis by taking into account only n=21 terms in the power series representations of the relevant astrophysical parameters. In the present model all physical quantities (density, pressure, speed of sound etc.) are finite at the center of the sphere. The physical behavior of the solution essentially depends on the equation of state of the dense matter at the center of the star. The stability properties of the model are also analyzed in detail for a number of central equations of state, and it is shown that it is stable with respect to the radial adiabatic perturbations. The astrophysical analysis indicates that this solution can be used as a realistic model for static general relativistic high density objects, like neutron stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Schwarzschild, Phys.-Math. Kl. 23, 189 (1916)

    Google Scholar 

  2. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  3. H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M.S.R. Delgaty, K. Lake, Comput. Phys. Commun. 115, 395 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S. Rahman, M. Visser, Class. Quantum Gravity 19, 935 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. D. Martin, M. Visser, Class. Quantum Gravity 20, 3699 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. K. Lake, Phys. Rev. D 67, 104015 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Martin, M. Visser, Phys. Rev. D 69, 104028 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  9. P. Boonserm, M. Visser, S. Weinfurtner, Phys. Rev. D 71, 124037 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Boonserm, M. Visser, S. Weinfurtner, Phys. Rev. D 76, 044024 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  11. P. Boonserm, M. Visser, Int. J. Mod. Phys. D 17, 135 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. K. Lake, Phys. Rev. D 77, 127502 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  13. C. Grenon, P.J. Elahi, K. Lake, Phys. Rev. D 78, 044028 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Loranger, K. Lake, Phys. Rev. D 78, 127501 (2008)

    Article  ADS  Google Scholar 

  15. C.M.G. de Sousa, E.A. de Araujo, Mon. Not. R. Astron. Soc. 415, 918 (2011)

    Article  ADS  Google Scholar 

  16. N. Dadhich, A. Molina, A. Khugaev, Phys. Rev. D 81, 104026 (2010)

    Article  ADS  Google Scholar 

  17. L.D. Landau, E.M. Lifshitz, Classical Theory of Fields (Pergamon, Oxford, 1976)

    Google Scholar 

  18. M.K. Mak, T. Harko, Appl. Math. Comput. 218, 10974 (2012)

    Article  MathSciNet  Google Scholar 

  19. M.K. Mak, T. Harko, Appl. Math. Comput. 219, 7465 (2013)

    Article  MathSciNet  Google Scholar 

  20. H. Knutsen, Mon. Not. R. Astron. Soc. 232, 163 (1988)

    MathSciNet  ADS  Google Scholar 

  21. S. Chandrasekhar, Astrophys. J. 140, 417 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J.M. Bardeen, K.S. Thorne, D.W. Meltzer, Astrophys. J. 145, 505 (1966)

    Article  ADS  Google Scholar 

  23. J.M. Lattimer, M. Prakash, in From Nuclei to Stars: Festschrift in Honor of Gerald E. Brown, ed. by S. Lee (World Scientific, Singapore, 2011), pp. 275–305. arXiv:1012.3208

    Chapter  Google Scholar 

  24. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  25. O. Barziv, L. Karper, M.H. van Kerkwijk, J.H. Telging, J. van Paradijs, Astron. Astrophys. 377, 925 (2001)

    Article  ADS  Google Scholar 

  26. H. Quaintrell, A.J. Norton, T.D.C. Ash, P. Roche, B. Willems, T.R. Bedding, I.K. Baldry, R.P. Fender, Astron. Astrophys. 401, 303 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank to the anonymous referee for comments and suggestions that helped us to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Harko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mak, M.K., Harko, T. Isotropic stars in general relativity. Eur. Phys. J. C 73, 2585 (2013). https://doi.org/10.1140/epjc/s10052-013-2585-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2585-5

Keywords

Navigation