Skip to main content
Log in

Evasion of HSR in S-wave charmonium decaying to P-wave light hadrons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The S-wave charmonium decaying to a P-wave and S-wave light hadron pairs are supposed to be suppressed by the helicity selection rule in the perturbative QCD framework. With an effective Lagrangian method, we show that the intermediate charmed meson loops can provide a possible mechanism for the evasion of the helicity selection rule, and result in sizeable decay branching ratios in some of those channels. The theoretical predictions can be examined by the forthcoming BES-III data in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. N. Brambilla et al. (Quarkonium Working Group Collaboration), hep-ph/0412158

  2. M.B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008). arXiv:0711.4556 [hep-ph]

    Article  ADS  Google Scholar 

  3. S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 2848 (1981)

    Article  ADS  Google Scholar 

  4. V.L. Chernyak, A.R. Zhitnitsky, Nucl. Phys. B 201, 492 (1982)

    Article  ADS  Google Scholar 

  5. V.L. Chernyak, A.R. Zhitnitsky, Nucl. Phys. B 214, 547 (1983). Erratum

    Google Scholar 

  6. V.L. Chernyak, A.R. Zhitnitsky, Phys. Rep. 112, 173 (1984)

    Article  ADS  Google Scholar 

  7. T. Feldmann, P. Kroll, Phys. Rev. D 62, 074006 (2000). hep-ph/0003096

    Article  ADS  Google Scholar 

  8. J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  9. X.Q. Li, D.V. Bugg, B.S. Zou, Phys. Rev. D 55, 1421 (1997)

    Article  ADS  Google Scholar 

  10. Q. Zhao, B.S. Zou, Phys. Rev. D 74, 114025 (2006). hep-ph/0606196

    Article  ADS  Google Scholar 

  11. Q. Zhao, Phys. Lett. B 636, 197 (2006). hep-ph/0602216

    Article  ADS  Google Scholar 

  12. J.J. Wu, Q. Zhao, B.S. Zou, Phys. Rev. D 75, 114012 (2007). arXiv:0704.3652 [hep-ph]

    Article  ADS  Google Scholar 

  13. X. Liu, X.Q. Zeng, X.Q. Li, Phys. Rev. D 74, 074003 (2006). hep-ph/0606191

    Article  ADS  Google Scholar 

  14. H.Y. Cheng, C.K. Chua, A. Soni, Phys. Rev. D 71, 014030 (2005). hep-ph/0409317

    Article  ADS  Google Scholar 

  15. V.V. Anisovich, D.V. Bugg, A.V. Sarantsev, B.S. Zou, Phys. Rev. D 51, 4619 (1995)

    Article  ADS  Google Scholar 

  16. Q. Zhao, B.s. Zou, Z.b. Ma, Phys. Lett. B 631, 22 (2005). hep-ph/0508088

    Article  ADS  Google Scholar 

  17. G. Li, Q. Zhao, B.S. Zou, Phys. Rev. D 77, 014010 (2008). arXiv:0706.0384 [hep-ph]

    Article  ADS  Google Scholar 

  18. Y.J. Zhang, G. Li, Q. Zhao, Phys. Rev. Lett. 102, 172001 (2009). arXiv:0902.1300 [hep-ph]

    Article  ADS  Google Scholar 

  19. X.H. Liu, Q. Zhao, Phys. Rev. D 81, 014017 (2010). arXiv:0912.1508 [hep-ph]

    Article  ADS  Google Scholar 

  20. X.H. Liu, Q. Zhao, J. Phys. G 38, 035007 (2011). arXiv:1004.0496 [hep-ph]

    Article  ADS  Google Scholar 

  21. Q. Wang, X.-H. Liu, Q. Zhao, Phys. Lett. B 711, 364 (2012). arXiv:1202.3026 [hep-ph]

    Article  ADS  Google Scholar 

  22. F.K. Guo, C. Hanhart, G. Li, U.G. Meissner, Q. Zhao, Phys. Rev. D 82, 034025 (2010). arXiv:1002.2712 [hep-ph]

    Article  ADS  Google Scholar 

  23. F.K. Guo, C. Hanhart, G. Li, U.G. Meissner, Q. Zhao, Phys. Rev. D 83, 034013 (2011). arXiv:1008.3632 [hep-ph]

    Article  ADS  Google Scholar 

  24. G. Li, F.L. Shao, C.W. Zhao, Q. Zhao, Phys. Rev. D 87, 034020 (2013). arXiv:1212.3784 [hep-ph]

    Article  ADS  Google Scholar 

  25. G. Li, X.-H. Liu, Q. Wang, Q. Zhao, Phys. Rev. D 88, 014010 (2013). arXiv:1302.1745 [hep-ph]

    Article  ADS  Google Scholar 

  26. C.W. Zhao, G. Li, X.H. Liu, F.L. Shao, Eur. Phys. J. C 73, 2482 (2013)

    Article  ADS  Google Scholar 

  27. X.-H. Liu, G. Li, Phys. Rev. D 88, 014013 (2013). arXiv:1306.1384 [hep-ph]

    Article  ADS  Google Scholar 

  28. G. Li, X.-H. Liu, arXiv:1307.2622 [hep-ph]

  29. Q. Wang, C. Hanhart, Q. Zhao, arXiv:1303.6355 [hep-ph]

  30. Q. Wang, C. Hanhart, Q. Zhao, Phys. Lett. B 725, 106 (2013). arXiv:1305.1997 [hep-ph]

    Article  ADS  Google Scholar 

  31. F.-K. Guo, C. Hanhart, U.-G. Meissner, Q. Wang, Q. Zhao, Phys. Lett. B 725, 127 (2013). arXiv:1306.3096 [hep-ph]

    Article  ADS  Google Scholar 

  32. E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007). arXiv:0708.4016 [hep-ph]

    Article  ADS  Google Scholar 

  33. S. Godfrey, J. Napolitano, Rev. Mod. Phys. 71, 1411 (1999). hep-ph/9811410

    Article  ADS  Google Scholar 

  34. T. Barnes, F.E. Close, P.R. Page, E.S. Swanson, Phys. Rev. D 55, 4157 (1997). hep-ph/9609339

    Article  ADS  Google Scholar 

  35. G. Li, Q. Zhao, C.-H. Chang, J. Phys. G 35, 055002 (2008). hep-ph/0701020

    Article  Google Scholar 

  36. P. Colangelo, F. De Fazio, T.N. Pham, Phys. Rev. D 69, 054023 (2004). hep-ph/0310084

    Article  ADS  Google Scholar 

  37. R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, G. Nardulli, Phys. Rep. 281, 145 (1997). hep-ph/9605342

    Article  ADS  Google Scholar 

  38. H.-Y. Cheng, K.-C. Yang, Phys. Rev. D 76, 114020 (2007). arXiv:0709.0137 [hep-ph]

    Article  ADS  Google Scholar 

  39. H.-Y. Cheng, K.-C. Yang, Phys. Rev. D 78, 094001 (2008). arXiv:0805.0329 [hep-ph]

    Article  ADS  Google Scholar 

  40. H.-Y. Cheng, K.-C. Yang, Phys. Rev. D 79, 039903 (2009). Erratum

    Article  MathSciNet  ADS  Google Scholar 

  41. C. Isola, M. Ladisa, G. Nardulli, P. Santorelli, Phys. Rev. D 68, 114001 (2003). hep-ph/0307367

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported, in part, by the National Natural Science Foundation of China (Grant Nos. 11035006, and 11275113), the DFG and NSFC joint project CRC 110, the Chinese Academy of Sciences (KJCX3-SYW-N2), the Ministry of Science and Technology of China (2009CB825200) and the China Postdoctoral Science Foundation (Grant No. 2013M530461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Appendices

Appendix A: Long-distance transition amplitudes for η c T+V

The explicit transition amplitudes of η c (p)→D (q 1)D (∗)(q 3)[D (q 2)]→T(p 1)V(p 2) via charged charmed-meson loops in Fig. 3 are given as follows:

$$\begin{aligned} &M_{DD^* [D^*]} \\ &\quad = (i)^3\int \frac {d^4q_2}{(2\pi)^4}\bigl[ g_{\eta_c D^*D}(p+q_3)_\mu \bigr] \bigl[g_{D^*D^*T} \phi_{\alpha\beta}^*\bigr] \\ &\qquad \times \bigl[-4 g_{D^*DV} \varepsilon_{\rho\sigma\xi\tau} p_{2}^\rho \varepsilon_2^{*\sigma} q_2^\xi \bigr] \\ &\qquad \times \frac {i(-g^{\mu\alpha} +q_1^\mu q_1^\alpha/m_1^2)}{q_1^2-m_1^2} \frac {i(-g^{\beta\tau} +q_2^\beta q_2^\tau/m_2^2)}{q_2^2-m_2^2} \\ &\qquad \times \frac {i}{q_3^2-m_3^2} \mathcal{F} \bigl(m_i, q_i^2\bigr) , \\ &M_{D^*D^* [D^*]}\\ &\quad = (i)^3\int \frac {d^4q_2}{(2\pi)^4}\bigl[ g_{\eta_c D^*D^*}\varepsilon_{\mu\nu\alpha\beta} q_1^\mu p^\beta \bigr] \bigl[g_{D^*D^*T} \phi_{\rho\sigma}^*\bigr] \\ &\qquad \times \bigl[ g_{D^*D^*V}(q_2-q_3)_\eta \varepsilon_2^{*\eta} g_{\xi\tau} \\ &\qquad + 4f_{D^*D^*V} \bigl( p_{2\tau} \varepsilon_{2\xi}^* - p_{2\xi} \varepsilon_{2\tau}^*\bigr)\bigr] \\ &\qquad \times \frac {i(-g^{\nu\rho} +q_1^\nu q_1^\rho/m_1^2)}{q_1^2-m_1^2} \frac {i(-g^{\sigma\xi} +q_2^\sigma q_2^\xi/m_2^2)}{q_2^2-m_2^2} \\ &\qquad \times \frac {i(-g^{\alpha\tau} +q_3^\alpha q_3^\tau /m_3^2)}{q_3^2-m_3^2} \mathcal{F} \bigl(m_i, q_i^2\bigr) . \end{aligned}$$
(A.1)
Fig. 3
figure 3

Schematic picture for η c TV via charmed meson loops. Here, T and V denote the light tensor and vector mesons, respectively. Similar diagrams are for neutral and strange charmed mesons. Similar pictures occur in \(\eta_{c}^{\prime}\to TV\)

Appendix B: Long-distance transition amplitudes for J/ψh+V

The explicit transition amplitudes of J/ψ(p)→D (∗)(q 1)D (∗)(q 3)[D (∗)(q 2)]→ h(p 1)V(p 2) via charged charmed-meson loops in Fig. 4 are given as follows:

$$\begin{aligned} &M_{DD [D^*]} \\ &\quad = (i)^3\int \frac {d^4q_2}{(2\pi)^4}\bigl[ -g_{\psi D^*D}(q_3-q_1)_\mu \varepsilon^\mu \bigr] \bigl[g_{D^*D h} \varepsilon_1^{*\nu} \bigr] \\ &\qquad \times \bigl[-4 g_{D^*DV} \varepsilon_{\rho\sigma\xi\tau} p_{2}^\rho \varepsilon_2^{*\sigma} q_2^\xi \bigr] \\ &\qquad \times \frac {i}{q_1^2-m_1^2} \frac {i(-g^{\nu\tau} +q_2^\nu q_2^\tau/m_2^2)}{q_2^2-m_2^2} \frac {i}{q_3^2-m_3^2} \mathcal{F} \bigl(m_i, q_i^2\bigr) , \\ &M_{DD^* [D^*]} \\ &\quad = (i)^3\int \frac {d^4q_2}{(2\pi)^4}\bigl[ g_{\psi D^*D}\varepsilon_{\mu\nu\alpha\beta} p^\mu \varepsilon^\nu (q_3-q_1)^\alpha \bigr] \\ &\qquad \times\bigl[g_{D^*Dh} \varepsilon_1^{*\rho}\bigr] \\ &\qquad \times \bigl[ g_{D^*D^*V}(q_2-q_3)_\eta \varepsilon_2^{*\eta} g_{\kappa\lambda} \\ &\qquad + 4f_{D^*D^*V} \bigl( p_{2\kappa} \varepsilon_{2\lambda}^* - p_{2\lambda} \varepsilon_{2\kappa}^*\bigr)\bigr] \\ &\qquad \times \frac {i}{q_1^2-m_1^2} \frac {i(-g^{\rho\lambda} +q_2^\rho q_2^\lambda/m_2^2)}{q_2^2-m_2^2} \\ &\qquad \times\frac {i(-g^{\beta\kappa} +q_3^\beta q_3^\kappa /m_3^2)}{q_3^2-m_3^2} \mathcal{F} \bigl(m_i, q_i^2\bigr) , \\ &M_{D^*D [D]} \\ &\quad = (i)^3\int \frac {d^4q_2}{(2\pi)^4}\bigl[ g_{\psi D^*D}\varepsilon_{\mu\nu\alpha\beta} p^\mu \varepsilon^\nu (q_3-q_1)^\alpha \bigr] \\ &\qquad \times\bigl[g_{D^*Dh} \varepsilon_1^{*\rho}\bigr] \bigl[ g_{DDV}(q_2-q_3)_\lambda \varepsilon_2^{*\lambda} \bigr] \\ &\qquad \times \frac {i(-g^{\beta\rho} +q_1^\beta q_1^\rho/m_1^2)}{q_1^2-m_1^2} \frac {i}{q_2^2-m_2^2} \frac {i}{q_3^2-m_3^2} \mathcal{F} \bigl(m_i, q_i^2\bigr) , \\ &M_{D^*D [D^*]} \\ &\quad = (i)^3\int \frac {d^4q_2}{(2\pi)^4}\bigl[ g_{\psi D^*D}\varepsilon_{\mu\nu\alpha\beta} p^\mu \varepsilon^\nu (q_3-q_1)^\alpha \bigr] \\ &\qquad \times\bigl[g_{D^*D^*h} \varepsilon_{\rho\sigma\xi\tau} \varepsilon_1^{*\sigma} p_1^\xi \bigr] \bigl[ -4g_{D^*DV} \varepsilon_{\lambda\eta \kappa \theta} p_2^\lambda \varepsilon_2^{*\eta} q_2^\kappa \bigr] \\ &\qquad \times \frac {i(-g^{\beta\rho} +q_1^\beta q_1^\rho/m_1^2)}{q_1^2-m_1^2} \frac {i(-g^{\tau\theta} +q_2^\tau q_2^\theta/m_2^2)}{q_2^2-m_2^2} \\ &\qquad \times \frac {i}{q_3^2-m_3^2} \mathcal{F} \bigl(m_i, q_i^2\bigr) , \\ &M_{D^*D^* [D]} \\ &\quad = (i)^3\int \frac {d^4q_2}{(2\pi)^4}\bigl[ g_{\psi D^*D^*}(g_{\mu\nu}g_{\alpha\beta} \\ &\qquad - g_{\mu\beta}g_{\nu\alpha} + g_{\mu\alpha}g_{\nu\beta}) \varepsilon^\mu (q_3-q_1)^\beta \bigr] \bigl[g_{D^*Dh} \varepsilon_{1\rho}^*\bigr] \\ &\qquad \times \bigl[ -4g_{D^*DV}\varepsilon_{\lambda\eta \kappa \theta} p_2^\lambda \varepsilon_2^{*\eta} q_2^\kappa \bigr]\frac {i(-g^{\alpha\rho} +q_1^\alpha q_1^\rho/m_1^2)}{q_1^2-m_1^2} \\ &\qquad \times \frac {i}{q_2^2-m_2^2} \frac {i(-g^{\nu\theta} +q_3^\nu q_3^\theta/m_3^2)}{q_3^2-m_3^2} \mathcal{F}\bigl(m_i, q_i^2 \bigr) , \\ &M_{D^*D^* [D^*]} \\ &\quad = (i)^3\int \frac {d^4q_2}{(2\pi)^4}\bigl[ g_{\psi D^*D^*}(g_{\mu\nu}g_{\alpha\beta}- g_{\mu\beta}g_{\nu\alpha} \\ &\qquad + g_{\mu\alpha}g_{\nu\beta}) \varepsilon^\mu (q_3-q_1)^\beta \bigr] \bigl[g_{D^*D^*h} \varepsilon_{\rho\sigma\xi\tau} \varepsilon_1^{*\sigma} p_1^\xi \bigr] \\ &\qquad \times \bigl[ g_{D^*D^*V}(q_2-q_3)_\eta \varepsilon_2^{*\eta} g_{\kappa\lambda} \\ &\qquad + 4f_{D^*D^*V} \bigl( p_{2\kappa} \varepsilon_{2\lambda}^* - p_{2\lambda} \varepsilon_{2\kappa}^*\bigr)\bigr] \\ &\qquad \times \frac {i(-g^{\alpha\rho} +q_1^\alpha q_1^\rho/m_1^2)}{q_1^2-m_1^2} \frac {i(-g^{\tau\lambda} +q_2^\tau q_2^\lambda/m_2^2)}{q_2^2-m_2^2} \\ &\qquad \times\frac {i(-g^{\nu\kappa} +q_3^\nu q_3^\kappa/m_3^2)}{q_3^2-m_3^2} \mathcal{F} \bigl(m_i, q_i^2\bigr) . \end{aligned}$$
(B.1)
Fig. 4
figure 4

Schematic picture for J/ψ→ h+V via charmed meson loops. Similar diagrams are for neutral and strange charmed mesons. Similar pictures occur in ψ′→ h+V. Here h denotes the axial-vector meson 1 P 1 states

Appendix C: Long-distance transition amplitudes for J/ψA+V

The explicit transition amplitudes of J/ψ(p)→D (∗)(q 1)D (∗)(q 3)[D (∗)(q 2)]→ A(p 1)V(p 2) via charged charmed-meson loops in Fig. 5 are given as follows:

$$\begin{aligned} &M_{DD [D^*]} \\ &\quad = (i)^3\int \frac {d^4q_2}{(2\pi)^4}\bigl[ -g_{\psi D^*D}(q_3-q_1)_\mu \varepsilon^\mu \bigr] \\ &\qquad \times\bigl[g_{D^*D A} \varepsilon_1^{*\nu} \bigr] \bigl[-4 g_{D^*DV} \varepsilon_{\rho\sigma\xi\tau} p_{2}^\rho \varepsilon_2^{*\sigma} q_2^\xi \bigr] \\ &\qquad \times \frac {i}{q_1^2-m_1^2} \frac {i(-g^{\nu\tau} +q_2^\nu q_2^\tau/m_2^2)}{q_2^2-m_2^2} \frac {i}{q_3^2-m_3^2} \mathcal{F} \bigl(m_i, q_i^2\bigr) , \\ &M_{DD^* [D^*]} \\ &\quad = (i)^3\int \frac {d^4q_2}{(2\pi)^4}\bigl[ g_{\psi D^*D}\varepsilon_{\mu\nu\alpha\beta} p^\mu \varepsilon^\nu (q_3-q_1)^\alpha \bigr] \\ &\qquad \times\bigl[g_{D^*DA} \varepsilon_1^{*\rho}\bigr] \bigl[ g_{D^*D^*V}(q_2-q_3)_\eta \varepsilon_2^{*\eta} g_{\kappa\lambda} \\ &\qquad + 4f_{D^*D^*V} \bigl( p_{2\kappa} \varepsilon_{2\lambda}^* - p_{2\lambda} \varepsilon_{2\kappa}^*\bigr)\bigr] \\ &\qquad \times \frac {i}{q_1^2-m_1^2} \frac {i(-g^{\rho\lambda} +q_2^\rho q_2^\lambda/m_2^2)}{q_2^2-m_2^2} \\ &\qquad \times \frac {i(-g^{\beta\kappa} +q_3^\beta q_3^\kappa /m_3^2)}{q_3^2-m_3^2} \mathcal{F} \bigl(m_i, q_i^2\bigr) , \\ &M_{D^*D [D]}\\ &\quad = (i)^3\int \frac {d^4q_2}{(2\pi)^4}\bigl[ g_{\psi D^*D}\varepsilon_{\mu\nu\alpha\beta} p^\mu \varepsilon^\nu (q_3-q_1)^\alpha \bigr] \\ &\qquad \times\bigl[g_{D^*DA} \varepsilon_1^{*\rho}\bigr] \bigl[ g_{DDV}(q_2-q_3)_\lambda \varepsilon_2^{*\lambda} \bigr] \\ &\qquad \times \frac {i(-g^{\beta\rho} +q_1^\beta q_1^\rho/m_1^2)}{q_1^2-m_1^2} \frac {i}{q_2^2-m_2^2} \\ &\qquad \times \frac {i}{q_3^2-m_3^2} \mathcal{F} \bigl(m_i, q_i^2\bigr) , \\ &M_{D^*D^* [D]} \\ &\quad = (i)^3\int \frac {d^4q_2}{(2\pi)^4}\bigl[ g_{\psi D^*D^*}(g_{\mu\nu}g_{\alpha\beta}- g_{\mu\beta}g_{\nu\alpha} \\ &\qquad + g_{\mu\alpha}g_{\nu\beta}) \varepsilon^\mu (q_3-q_1)^\beta \bigr] \\ &\qquad \times \bigl[g_{D^*DA} \varepsilon_{1\rho}^*\bigr] \bigl[ -4g_{D^*DV}\varepsilon_{\lambda\eta \kappa \theta} p_2^\lambda \varepsilon_2^{*\eta} q_2^\kappa \bigr] \\ &\qquad \times \frac {i(-g^{\alpha\rho} +q_1^\alpha q_1^\rho/m_1^2)}{q_1^2-m_1^2} \\ &\qquad \times\frac {i}{q_2^2-m_2^2} \frac {i(-g^{\nu\theta} +q_3^\nu q_3^\theta/m_3^2)}{q_3^2-m_3^2} \mathcal{F} \bigl(m_i, q_i^2\bigr) . \end{aligned}$$
(C.1)
Fig. 5
figure 5

Schematic picture for J/ψ→ A+V via charmed meson loops. Similar diagrams are for neutral and strange charmed mesons. Similar pictures occur in ψ′→ A+V. Here A denotes the axial-vector meson 3 P 1 states

Fig. 6
figure 6

The branching ratios of J/ψf 1 ϕ (solid line) and \(J/\psi\to f_{1}^{\prime}\omega\) (dashed line) via charmed meson loops in terms of f 1\(f_{1}^{\prime}\) mixing angle α A with α=0.78

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Liu, XH. & Zhao, Q. Evasion of HSR in S-wave charmonium decaying to P-wave light hadrons. Eur. Phys. J. C 73, 2576 (2013). https://doi.org/10.1140/epjc/s10052-013-2576-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2576-6

Keywords

Navigation