Skip to main content
Log in

Will there be again a transition from acceleration to deceleration in course of the dark energy evolution of the universe?

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this work we consider the evolution of the interactive dark fluids in the background of homogeneous and isotropic FRW model of the universe. The dark fluids consist of a warm dark matter and a dark energy and both are described as perfect fluid with barotropic equation of state. The dark species interact non-gravitationally through an additional term in the energy conservation equations. An autonomous system is formed in the energy density spaces and fixed points are analyzed. A general expression for the deceleration parameter has been obtained and it is possible to have more than one zero of the deceleration parameter. Finally, vanishing of the deceleration parameter has been examined with some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.G. Riess et al. (Supernova Search Team Collaboration), Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al. (Supernova Cosmology Project Collaboration), Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. W.J. Percival et al. (The 2dFGRS Collaboration), Mon. Not. R. Astron. Soc. 327, 1297 (2001)

    Article  ADS  Google Scholar 

  4. P. Astier et al. arXiv:astro-ph/0510447

  5. A.G. Riess et al. (Supernovae Search Team Collaboration), Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  6. W.J. Percival et al., Mon. Not. R. Astron. Soc. 327, 1297 (2001)

    Article  ADS  Google Scholar 

  7. M. Tegmark et al. (SDDS Collaboration), Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  8. U. Seljak et al. (SDDS Collaboration), Phys. Rev. D 71, 103515 (2005)

    Article  ADS  Google Scholar 

  9. D.N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  10. A.C.S. Readhead et al., Astrophys. J. 609, 498 (2004)

    Article  ADS  Google Scholar 

  11. J.H. Goldstein et al., Astrophys. J. 599, 773 (2003)

    Article  ADS  Google Scholar 

  12. E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. 189, 330 (2009)

    Article  Google Scholar 

  13. D.J. Eisenstein et al. (SDDS Collaboration), Astrophys. J. 633, 560574 (2005)

    Article  Google Scholar 

  14. B. Jain, A. Taylor, Phys. Rev. Lett. 91, 141302 (2003)

    Article  ADS  Google Scholar 

  15. V. Sahni, Class. Quantum Gravity 19, 3435 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. T. Padmanabhan, Phys. Rep. 380, 235 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. G. Esposito-Farese, Class. Quantum Gravity 25, 114017 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Capozziello, M. Francaviglia, Gen. Relativ. Gravit. 40, 357 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Capozziello, V. Faraoni, Beyond Einstein Gravity. Fundamental Theories of Physics, vol. 170 (Springer, Dordrecht, 2011)

    MATH  Google Scholar 

  21. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. A. DeFelice, D.F. Mota, S. Tsujikawa, Phys. Rev. D 81, 023532 (2010)

    Article  ADS  Google Scholar 

  23. H. Farajollahi, M. Farhoudi, H. Shojaie, Int. J. Theor. Phys. 49, 2558 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Zuntz, T.G. Zlosnik, F. Bourliot, P.G. Ferreira, G.D. Starkman, Phys. Rev. D 81, 104015 (2010)

    Article  ADS  Google Scholar 

  25. M. La Camera, Mod. Phys. Lett. A 25, 25 (2010)

    Article  ADS  Google Scholar 

  26. C. Deffayet, G.R. Dvali, G. Gabadadze, Phys. Rev. D 65, 044023 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  27. G. Dvali, M.S. Turner, Dark energy as a modification of the Friedmann equation (2003). arXiv:astro-ph/0301510

  28. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. S.M. Carroll, Living Rev. Relativ. 4, 1 (2001)

    ADS  Google Scholar 

  30. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. R.J. Yang, S.N. Zhang, Mon. Not. R. Astron. Soc. 407, 1835 (2010)

    Article  ADS  Google Scholar 

  32. R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  33. R.R. Caldwell, Phys. Lett. B 545, 17–22 (2002)

    Article  ADS  Google Scholar 

  34. C. Armendariz-Picon, V. Mukhanov, P.J. Steinhardt, Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  35. T. Padmanabhan, Phys. Rev. D 66, 021301 (2002)

    Article  ADS  Google Scholar 

  36. A. Sen, Phys. Scr. T 117, 70 (2005)

    Article  ADS  Google Scholar 

  37. E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 043539 (2004)

    Article  ADS  Google Scholar 

  38. B. Feng, X.L. Wang, X.M. Zhang, Phys. Lett. B 607, 35 (2005)

    Article  ADS  Google Scholar 

  39. A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  40. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  41. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82, 4971 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. H. Wei, R.G. Cai, Phys. Lett. B 663, 1 (2008)

    Article  ADS  Google Scholar 

  43. H. Wei, R.G. Cai, Phys. Lett. B 660, 113 (2008)

    Article  ADS  Google Scholar 

  44. C. Gao, F. Wu, X. Chen, Y.G. Shen, Phys. Rev. D 79, 043511 (2009)

    Article  ADS  Google Scholar 

  45. P.J. Steinhardt, in Critical Problems in Physics, ed. by V.L. Fitch, D.R. Marlow (Princeton University, Princeton, 1997)

    Google Scholar 

  46. I. Zlatev, L.-M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

  47. L. Amendola, Phys. Rev. D 62, 043511 (2000)

    Article  ADS  Google Scholar 

  48. W. Zimdahl, D. Pavon, L.P. Chimento, Phys. Lett. B 521, 133 (2001)

    Article  ADS  MATH  Google Scholar 

  49. W. Zimdahl, D. Pavon, L.P. Chimento, Gen. Relativ. Gravit. 35, 413 (2003)

    Article  ADS  MATH  Google Scholar 

  50. M. Gasperini, F. Piazza, G. Veneziano, Phys. Rev. D 65, 023508 (2001)

    Article  ADS  Google Scholar 

  51. W. Zimdahl, Int. J. Mod. Phys. D 14, 2319 (2005)

    Article  ADS  MATH  Google Scholar 

  52. D. Pavon, W. Zimdahl, Phys. Lett. B 628, 206 (2005)

    Article  ADS  Google Scholar 

  53. G. Farrar, P.J.E. Peebles, Astrophys. J. 604, 1 (2004)

    Article  ADS  Google Scholar 

  54. S. del Campo, R. Herrera, D. Pavon, Phys. Rev. D 70, 043540 (2004)

    Article  ADS  Google Scholar 

  55. M.S. Berger, H. Shojaei, Phys. Rev. D 73, 083528 (2006)

    Article  ADS  Google Scholar 

  56. B. Hu, Y. Ling, Phys. Rev. D 73, 123510 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  57. L. Hui, Z. Guo, Y. Zhang, Int. J. Mod. Phys. D 15, 869 (2006)

    Article  ADS  MATH  Google Scholar 

  58. A.P. Billyard, A.A. Coley, Phys. Rev. D 61, 083503 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  59. M. Szydlowski, Phys. Lett. B 632, 1 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  60. M. Szydlowski, T. Stachowiak, R. Wojtak, Phys. Rev. D 73, 063516 (2006)

    Article  ADS  Google Scholar 

  61. L.P. Chimento, A.S. Jakubi, D. Pavon, W. Zimdahl, Phys. Rev. D 67, 083513 (2003). arXiv:gr-qc/0505020

    Article  ADS  Google Scholar 

  62. L.P. Chimento, D. Pavon, Phys. Rev. D 73, 063511 (2006)

    Article  ADS  Google Scholar 

  63. F. Arevalo, A.P. Ramos Bacalhau, W. Zimdahl, Cosmological dynamics with non-linear interactions. arXiv:1112.5095

  64. M. Li, Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  65. Q.G. Huang, M. Li, J. Cosmol. Astropart. Phys. 0408, 013 (2004)

    Article  ADS  Google Scholar 

  66. B. Wang, E. Abdalla, T. Osada, Phys. Rev. Lett. 85, 5507 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  67. B. Wang, Y. Gong, E. Abdalla, Phys. Lett. B 624, 141 (2005)

    Article  ADS  Google Scholar 

  68. B. Wang, Y. Gong, E. Abdalla, Phys. Rev. D 74, 083520 (2006)

    Article  ADS  Google Scholar 

  69. J.H. He, B. Wang, J. Cosmol. Astropart. Phys. 06, 010 (2008)

    Article  ADS  Google Scholar 

  70. A.A. Sen, D. Pavon, Phys. Lett. B 664, 7 (2008)

    Article  ADS  Google Scholar 

  71. D.K. Arrowsmith, C.M. Place, An Introduction to Dynamical System (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  72. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. (Springer, Berlin, 2003)

    MATH  Google Scholar 

  73. J. Ponce de Leon, Class. Quantum Gravity 29, 135009 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  74. C. Wetterich, Phys. Rev. D 65, 123512 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  75. S. Kasuya, Phys. Lett. B 515, 121 (2001)

    Article  ADS  Google Scholar 

  76. T. Padmanabhan, T. Roy Choudhury, Phys. Rev. D 66, 081301 (2002)

    Article  ADS  Google Scholar 

  77. U. Debnath, A. Banerjee, S. Chakraborty, Class. Quantum Gravity 21, 5609 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. P. Singh, F. Vidotto, Phys. Rev. D 83, 064027 (2011)

    Article  ADS  Google Scholar 

  79. S. Nojiri, S.D. Odintsov, S. Tsujikawa, Phys. Rev. D 71, 063004 (2005)

    Article  ADS  Google Scholar 

  80. G. Hinshaw et al. arXiv:1212.5226

  81. C.L. Bennet et al. arXiv:1212.5225

  82. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author SC is thankful to the UGC-DRS programme and the author SP is thankful to The Council of Scientific and Industrial Research (CSIR), Govt. of India, for the research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, S., Chakraborty, S. Will there be again a transition from acceleration to deceleration in course of the dark energy evolution of the universe?. Eur. Phys. J. C 73, 2575 (2013). https://doi.org/10.1140/epjc/s10052-013-2575-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2575-7

Keywords

Navigation