Skip to main content
Log in

BPHZ renormalization and its application to non-commutative field theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In a recent work a modified BPHZ scheme has been introduced and applied to one-loop Feynman graphs in non-commutative ϕ 4-theory. In the present paper, we first review the BPHZ method and then we apply the modified BPHZ scheme as well as Zimmermann’s forest formula to the sunrise graph, i.e. a typical higher-loop graph involving overlapping divergences. Furthermore, we show that the application of the modified BPHZ scheme to the IR-singularities appearing in non-planar graphs (UV/IR mixing problem) leads to the introduction of a 1/p 2 term and thereby to a renormalizable model. Finally, we address the application of this approach to gauge field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In the non-commutative setting to be considered in Sects. 3 and 4, this condition obviously has to be relaxed since the star product introduces a certain type of non-localities, see Ref. [1]. However, the condition that the counterterms have the same form as those in the original Lagrangian still applies—see also the discussion in Sect. 3.2.

  2. More generally, one may have integrals over several internal momenta k 1,…,k L .

  3. Actually this formula is tantamount to Dyson’s original prescription of renormalization for non-overlapping divergences [33].

  4. The forest formula appears to have been discovered independently by Zavyalov and Stepanov [35], the BPHZ method having been elegantly reformulated by Zimmermann [28, 30].

  5. Actually, the s-trick has recently also been implemented via a BRST-doublet, see Ref. [57].

  6. For the sake of simplicity, we assume that the parameter σ appearing in the gauge field propagator of Ref. [54] vanishes, i.e. in the following calculation we neglect an extra non-local counterterm for the singularity (89). Furthermore, for the present illustration we consider a Feynman-like gauge fixing where an additional damping factor is included in order to arrive at the simplest form of the gauge field propagator. We note, however, that the full model of Ref. [54] is based on the Landau gauge fixing, or may be generalized to other gauges along the lines of the recent work [58].

References

  1. D.N. Blaschke, T. Garschall, F. Gieres, F. Heindl, M. Schweda, M. Wohlgenannt, Eur. Phys. J. C 73, 2262 (2013). arXiv:1207.5494

    Article  ADS  Google Scholar 

  2. R.J. Szabo, Phys. Rep. 378, 207–299 (2003). arXiv:hep-th/0109162

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. R. Gurau, J. Magnen, V. Rivasseau, A. Tanasa, Commun. Math. Phys. 287, 275–290 (2009). arXiv:0802.0791

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. W. Zimmermann, Commun. Math. Phys. 15, 208–234 (1969)

    Article  ADS  MATH  Google Scholar 

  5. O. Piguet, S.P. Sorella, Lect. Notes Phys., M Monogr. 28, 1–134 (1995)

    Article  MathSciNet  Google Scholar 

  6. A. Boresch, S. Emery, O. Moritsch, M. Schweda, T. Sommer, H. Zerrouki, Applications of Noncovariant Gauges in the Algebraic Renormalization Procedure (World Scientific, Singapore, 1998)

    Book  MATH  Google Scholar 

  7. E.C.G. Stueckelberg, T.A. Green, Helv. Phys. Acta 24, 153–174 (1951)

    MathSciNet  MATH  Google Scholar 

  8. A.S. Wightman, Orientation, in Renormalization Theory, ed. by G. Velo, A. Wightman, Proc. of the NATO Advanced Study Institute, Erice, 1975 (Reidel, Dordrecht, 1976)

    Google Scholar 

  9. N.N. Bogoliubov, D.V. Shirkov, Fortschr. Phys. 3, 439–495 (1955)

    Article  Google Scholar 

  10. N.N. Bogoliubov, D.V. Shirkov, Fortschr. Phys. 4, 438–517 (1956)

    Article  Google Scholar 

  11. N. Bogoliubov, O. Parasiuk, Acta Math. 97, 227–266 (1957)

    Article  MathSciNet  Google Scholar 

  12. N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields (Wiley, New York, 1980)

    Google Scholar 

  13. K. Hepp, Commun. Math. Phys. 2, 301–326 (1966)

    Article  ADS  MATH  Google Scholar 

  14. W. Zimmermann, Commun. Math. Phys. 6, 161–188 (1967)

    Article  ADS  Google Scholar 

  15. J.H. Lowenstein, Commun. Math. Phys. 47, 53–68 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. W. Zimmermann, Local operator products and renormalization in quantum field theory, in Lectures on Elementary Particles and Quantum Field Theory, ed. by S. Deser, M. Grisaru, H. Pendleton, Proc. 1970 Brandeis Summer Institute in Theor. Phys. (MIT Press, Cambridge, 1971)

    Google Scholar 

  17. W. Zimmermann, Ann. Phys. 77, 536–569 (1973)

    Article  ADS  Google Scholar 

  18. J. Lowenstein, M. Weinstein, W. Zimmermann, Phys. Rev. D 10, 1854–1871 (1974)

    Article  ADS  Google Scholar 

  19. J.H. Lowenstein, W. Zimmermann, Nucl. Phys. B 86, 77–103 (1975)

    Article  ADS  Google Scholar 

  20. J.H. Lowenstein, BPHZ renormalization, in Renormalization Theory, ed. by G. Velo, A. Wightman, Proc. of the NATO Advanced Study Institute, Erice, 1975 (Reidel, Dordrecht, 1976)

    Google Scholar 

  21. J.H. Lowenstein, Nucl. Phys. B 96, 189 (1975)

    Article  ADS  Google Scholar 

  22. M. Schweda, J. Weigl, P. Gaigg, Riv. Nuovo Cimento 5(5), 1–54 (1982)

    Article  Google Scholar 

  23. C. Itzykson, J.-B. Zuber, Quantum Field Theory (Dover, New York, 2005)

    Google Scholar 

  24. E.B. Manoukian, Renormalization. Pure and Applied Mathematics (Academic Press, San Diego, 1983)

    MATH  Google Scholar 

  25. J.C. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1986)

    Google Scholar 

  26. O.I. Zavyalov, Renormalized Quantum Field Theory. Mathematics and Its Applications, vol. 21 (Kluwer, Dordrecht, 1990). Soviet series

    Google Scholar 

  27. V.A. Smirnov, Renormalization and Asymptotic Expansions. Progress in Mathematical Physics (Birkhäuser, Basel, 1991)

    MATH  Google Scholar 

  28. T. Muta, Foundations of Quantum Chromodynamics, 2nd edn. World Sci. Lect. Notes Phys., vol. 57 (1998), pp. 1–409

    MATH  Google Scholar 

  29. A. Das, Quantum Field Theory (World Scientific, Singapore, 2008)

    MATH  Google Scholar 

  30. J.C. Collins, Renormalization: general theory, in Encyclopedia of Mathematical Physics, ed. by J.-P. Francoise, G.L. Naber, T.S. Tsun (Academic Press, Oxford, 2006), pp. 399–407. arXiv:hep-th/0602121

    Chapter  Google Scholar 

  31. K. Sibold, Störungstheoretische Renormierung, Quantisierung von Eichtheorien. Lecture notes, University of Leipzig. URL http://www.physik.uni-leipzig.de/~sibold/qftskriptum.pdf

  32. K. Fredenhagen, Quantenfeldtheorie. Lecture notes, University of Hamburg. URL http://unith.desy.de/sites/site_unith/content/e20/e72/e180/e61334/e65025/SkriptQFT06.pdf

  33. F.J. Dyson, Phys. Rev. 75, 1736–1755 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. M. Bergère, J.-B. Zuber, Commun. Math. Phys. 35, 113–140 (1974)

    Article  ADS  Google Scholar 

  35. O.I. Zav’yalov, B.M. Stepanov, Sov. J. Nucl. Phys. 1, 658 (1965)

    Google Scholar 

  36. M. Sampaio, A. Baeta Scarpelli, B. Hiller, A. Brizola, M. Nemes, S. Gobira, Phys. Rev. D 65, 125023 (2002). arXiv:hep-th/0203261

    Article  ADS  Google Scholar 

  37. S. Falk, R. Häußling, F. Scheck, J. Phys. A, Math. Theor. 43, 035401 (2010). arXiv:0901.2252

    Article  ADS  Google Scholar 

  38. D.N. Blaschke, F. Gieres, E. Kronberger, T. Reis, M. Schweda, R.I.P. Sedmik, J. High Energy Phys. 11, 074 (2008). arXiv:0807.3270

    Article  MathSciNet  ADS  Google Scholar 

  39. P.A. Grassi, Nucl. Phys. B 462, 524–550 (1996)

    Article  ADS  Google Scholar 

  40. S. Minwalla, M. Van Raamsdonk, N. Seiberg, J. High Energy Phys. 02, 020 (2000). arXiv:hep-th/9912072

    Article  ADS  Google Scholar 

  41. W. Heisenberg, Letter to R. Peierls (1930), in Wolfgang Pauli, Scientific Correspondence, vol. II, ed. by K. von Meyenn (Springer, Berlin, 1985), p. 15

    Google Scholar 

  42. W. Pauli, Letter to R. J. Oppenheimer (1946), in Wolfgang Pauli, Scientific Correspondence, vol. III, ed. by K. von Meyenn (Springer, Berlin, 1946), p. 380

    Google Scholar 

  43. H.S. Snyder, Phys. Rev. 71, 38–41 (1947)

    Article  ADS  MATH  Google Scholar 

  44. H.S. Snyder, Phys. Rev. 72, 68 (1947)

    Article  ADS  MATH  Google Scholar 

  45. C.N. Yang, Phys. Rev. 72, 874 (1947)

    Article  ADS  MATH  Google Scholar 

  46. D.N. Blaschke, F. Gieres, E. Kronberger, M. Schweda, M. Wohlgenannt, J. Phys. A, Math. Theor. 41, 252002 (2008). arXiv:0804.1914

    Article  MathSciNet  ADS  Google Scholar 

  47. A. Micu, M.M. Sheikh Jabbari, J. High Energy Phys. 01, 025 (2001). arXiv:hep-th/0008057

    Article  MathSciNet  ADS  Google Scholar 

  48. V. Rivasseau, Non-commutative renormalization, in Quantum Spaces—Poincaré Seminar 2007, ed. by B. Duplantier, V. Rivasseau (Birkhäuser, Basel, 2007). arXiv:0705.0705

    Google Scholar 

  49. D.N. Blaschke, E. Kronberger, R.I.P. Sedmik, M. Wohlgenannt, SIGMA 6, 062 (2010). arXiv:1004.2127

    MathSciNet  Google Scholar 

  50. H. Grosse, M. Wohlgenannt, Eur. Phys. J. C 52, 435–450 (2007). arXiv:hep-th/0703169

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. A. de Goursac, J.-C. Wallet, R. Wulkenhaar, Eur. Phys. J. C 51, 977–987 (2007). arXiv:hep-th/0703075

    Article  ADS  MATH  Google Scholar 

  52. D.N. Blaschke, H. Grosse, M. Schweda, Europhys. Lett. 79, 61002 (2007). arXiv:0705.4205

    Article  MathSciNet  ADS  Google Scholar 

  53. L.C.Q. Vilar, O.S. Ventura, D.G. Tedesco, V.E.R. Lemes, J. Phys. A, Math. Theor. 43, 135401 (2010). arXiv:0902.2956

    Article  MathSciNet  ADS  Google Scholar 

  54. D.N. Blaschke, A. Rofner, R.I.P. Sedmik, M. Wohlgenannt, J. Phys. A, Math. Theor. 43, 425401 (2010). arXiv:0912.2634

    Article  MathSciNet  ADS  Google Scholar 

  55. D.N. Blaschke, Europhys. Lett. 91, 11001 (2010). arXiv:1005.1578

    Article  ADS  Google Scholar 

  56. D.N. Blaschke, H. Grosse, J.-C. Wallet, J. High Energy Phys. 06, 038 (2013). arXiv:1302.2903

    Article  ADS  MathSciNet  Google Scholar 

  57. A. Quadri, J. Phys. G, Nucl. Part. Phys. 30, 677 (2004). arXiv:hep-th/0309133

    Article  ADS  Google Scholar 

  58. P.M. Lavrov, O. Lechtenfeld, Phys. Lett. B 725, 386–388 (2013). arXiv:1305.2931

    Article  ADS  Google Scholar 

  59. D.N. Blaschke, A. Rofner, M. Schweda, R.I.P. Sedmik, Eur. Phys. J. C 62, 433 (2009). arXiv:0901.1681

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

D.N. Blaschke is a recipient of an APART fellowship of the Austrian Academy of Sciences, and is also grateful for the hospitality of the theory division of LANL and its partial financial support. F. Gieres wishes the express his gratitude to S. Theisen for valuable discussions. M. Schweda thanks C. Becchi for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel N. Blaschke.

Appendix

Appendix

The purpose of this appendix is to illustrate problems arising for the one-loop polarization (88) associated to the naïve non-commutative gauge field model (85) when applying the s-trick described in Sect. 2.10. Thus, we introduce a mass term involving an auxiliary mass M and an auxiliary variable s in all internal propagators,

$$ \frac{1}{k^2} \; \leadsto\; \frac{1}{k^2 + M_s^2}, \quad \mathrm{with}\ M_s \equiv(1-s) M, $$
(A.1)

and apply the Taylor expansion operator \(t_{p,s}^{\delta(\varGamma)}\) around both p=0 and s=0, while setting s=1 at the end of the calculation so as to discard artificial IR-problems.

For the quadratically divergent integral (88) we have

$$\begin{aligned} &{\int d^4k \bigl(t_{p,s}^2 I_{\varGamma\mu\nu} \bigr) (p,\tilde {p},k,s)} \\ &{\quad{}=\int d^4k \biggl( I_{\varGamma\mu\nu} (0,\tilde{p},k,0) + \cdots} \\ &{\qquad{}+ \frac{p^{\rho} p^{\sigma}}{2} \frac{\partial^2 I_{\varGamma\mu\nu}}{\partial p^{\rho} \partial p^{\sigma}}(0,\tilde{p},k,0)} \\ &{\qquad{} + \frac{s^2}{2} \frac{\partial^2 I_{\varGamma\mu\nu } }{\partial s^2} (0,\tilde{p},k,0) \biggr)} \\ &{\quad{}={2g^2}\int\frac{d^4k}{(2\pi)^4} \frac{1-\cos(k\tilde {p})}{(k^2+M^2)^2} \biggl\{ 4k_\mu k_\nu-3p_\mu p_\nu} \\ &{\qquad{}+2\delta_{\mu\nu} \bigl(p^2-k^2 \bigr)+2 \frac{2{k_\mu k_\nu}- \delta_{\mu\nu} k^2 }{k^2+M^2}} \\ &{\qquad{}\times\biggl[ 4 \frac{ (pk)^2+3 s^2 M^4 }{k^2+M^2}} \\ &{\qquad{}+ 2 s(2-s) M^2 -p^2 \biggr] \biggr\},} \end{aligned}$$
(A.2)

where we took into account the fact that the integral over an odd function of k vanishes upon integration over symmetric intervals. Thus, the finite part of the vacuum polarization reads

$$\begin{aligned} \varPi_{\mu\nu}^{\mathrm{finite}}(p) &= \lim_{s\to1} \int d^4k \bigl(1-t_{p,s}^2 \bigr) I_{\varGamma\mu\nu} (p, \tilde{p},k,s) \\ &={2g^2} \lim_{s\to1} \int\frac{d^4k}{(2\pi)^4} {\bigl[ 1-\cos(k\tilde{p})\bigr]} \\ &\quad{}\times \biggl\{-2 \frac{2{k_\mu k_\nu}- \delta_{\mu\nu} k^2 }{(k^2+M^2)^3} \\ &\quad{}\times \biggl[ 4 \frac{ (pk)^2+3 s^2 M^4 }{k^2+M^2} + 2 s(2-s) M^2 -p^2 \biggr] \\ &\quad{}+ \bigl[ 4k_\mu k_\nu-3p_\mu p_\nu+2\delta_{\mu\nu}\bigl(p^2-k^2\bigr) \bigr] \\ &\quad{}\times \biggl[ \frac{1}{(k^2+M_s^2) ((k+p)^2+M_s^2 )} \\ &\quad{}-\frac{1}{ (k^2+M^2 )^2} \biggr] \biggr\}. \end{aligned}$$
(A.3)

Evaluation of the resulting integral using Schwinger’s parametrization leads to an expression whose planar part is UV-finite, and whose non-planar part involves modified Bessel functions of the second kind. Expansion of the latter around small values of \(\tilde{p}^{2}\) enables us to perform the final parametric integral (i.e. the integral over the Schwinger parameter ξ already considered in (64)). After an expansion around small mass M we finally get

$$\begin{aligned} &{\varPi_{\mu\nu}^{\mathrm{finite}}(p)} \\ &{\quad{}= \frac{g^2 M^2}{96 \pi^2} \biggl\{ 2p^2 \tilde{p}_{\mu} \tilde{p}_{\nu} \biggl[ \ln \biggl( \frac{1}{4} M^2 \tilde{p}^2 \biggr)+2 \gamma_E -1 \biggr]} \\ &{\qquad{}+5 \tilde{p}^2 \bigl(p_{\mu} p_{\nu}-p^2\delta_{\mu\nu}\bigr) \biggl[ \ln \biggl( \frac{1}{4} M^2 \tilde{p}^2 \biggr)+2 \gamma_E -2 \biggr]} \\ &{\qquad{}+p^2\tilde{p}^2 \delta_{\mu \nu} \biggl[ 1-2 \gamma _E- \ln\biggl(\frac{1}{4} M^2 \tilde{p}^2 \biggr) \biggr] \biggr\}} \\ &{\qquad{}-\frac{g^2 p^2\tilde{p}^2}{4800\pi^2}\bigl(p_\mu p_\nu-p^2 \delta _{\mu\nu}\bigr) \biggl[ 45\ln \biggl(\frac{1}{4}p^2 \tilde{p}^2 \biggr)} \\ &{\qquad{}+90\gamma_E-163 \biggr]} \\ &{\qquad{}-\frac{g^2 (p^2 )^2}{7200 \pi^2} \tilde{p}_{\mu} \tilde{p}_{\nu} \biggl[ 15 \ln \biggl(\frac{1}{4} p^2 \tilde{p}^2 \biggr)+30 \gamma_E -46 \biggr]} \\ &{\qquad{}+\mathcal{O} { \bigl(\bigl(\tilde{p}^2 \bigr)^2,M^4 \bigr)}.} \end{aligned}$$
(A.4)

The mass dependent parts are not transversal, but the limit M→0 exists,

$$\begin{aligned} &{\lim_{M\to0} \varPi_{\mu\nu}^{\mathrm{finite}}(p)} \\ &{\quad{}=-\frac{g^2 p^2\tilde{p}^2}{4800\pi^2}\bigl(p_\mu p_\nu-p^2 \delta_{\mu \nu}\bigr) \biggl[ 45\ln \biggl(\frac{1}{4}p^2 \tilde{p}^2 \biggr)} \\ &{\qquad{}+90\gamma_E-163 \biggr]} \\ &{\qquad{}-\frac{g^2 (p^2 )^2}{7200 \pi^2} \tilde{p}_{\mu} \tilde{p}_{\nu} \biggl[ 15 \ln \biggl(\frac{1}{4} p^2 \tilde{p}^2 \biggr)+30 \gamma_E -46 \biggr]} \\ &{\qquad{}+\mathcal{O} { \bigl(\bigl(\tilde{p}^2 \bigr)^2 \bigr)},} \end{aligned}$$
(A.5)

and this expression is indeed transversal. These results show already at one-loop level that the introduction of a regulator mass explicitly breaks gauge invariance and violates Slavnov–Taylor identities such as the transversality of the vacuum polarization, see also [39] and references therein. In our specific example, the limit M→0 exists and restores gauge symmetry, but this need not be the case for other graphs. Fortunately, as discussed in Sect. 4, we do not have to consider an infrared regularization using an auxiliary mass for the non-commutative gauge field model of Ref. [54].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaschke, D.N., Gieres, F., Heindl, F. et al. BPHZ renormalization and its application to non-commutative field theory. Eur. Phys. J. C 73, 2566 (2013). https://doi.org/10.1140/epjc/s10052-013-2566-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2566-8

Keywords

Navigation