Skip to main content
Log in

Is Z c (3900) a molecular state?

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Assuming the newly observed Z c (3900) to be a molecular state of \(D\bar{D}^{*}(D^{*} \bar{D})\), we calculate the partial widths of Z c (3900)→J/ψ+π; ψ′+π; η c +ρ and \(D\bar{D}^{*}\) within the light-front model (LFM). Z c (3900)→J/ψ+π is the channel by which Z c (3900) was observed, our calculation indicates that it is indeed one of the dominant modes whose width can be in the range of a few MeV depending on the model parameters. Similar to Z b and \(Z_{b}'\), Voloshin suggested that there should be a resonance \(Z_{c}'\) at 4030 MeV, which can be a molecular state of \(D^{*}\bar{D}^{*}\). Then we go on calculating its decay rates to all the aforementioned final states and the \(D^{*}\bar{D}^{*}\) as well. It is found that if Z c (3900) is a molecular state of \({1\over\sqrt{2}}(D\bar{D}^{*}+D^{*}\bar{D})\), the partial width of \(Z_{c}(3900)\to D\bar{D}^{*}\) is rather small, but the rate of Z c (3900)→ψ(2s)π is even larger than Z c (3900)→J/ψπ. The implications are discussed and it is indicated that with the luminosity of BES and BELLE, the experiments may finally determine if Z c (3900) is a molecular state or a tetraquark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Ablikim et al. (BESIII Collaboration), arXiv:1303.5949 [hep-ex]

  2. Z.Q. Liu et al. (Belle Collaboration), arXiv:1304.0121 [hep-ex]

  3. T. Xiao, S. Dobbs, A. Tomaradze, K.K. Seth, arXiv:1304.3036 [hep-ex]

  4. S.K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003). arXiv:hep-ex/0309032

    Article  ADS  Google Scholar 

  5. Belle Collaboration, arXiv:1105.4583 [hep-ex]

  6. F.-K. Guo, C. Hidalgo-Duque, J. Nieves, M.P. Valderrama, arXiv:1303.6608 [hep-ph]

  7. D.-Y. Chen, X. Liu, T. Matsuki, arXiv:1304.5845 [hep-ph]

  8. Q. Wang, C. Hanhart, Q. Zhao, arXiv:1303.6355 [hep-ph]

  9. E. Wilbring, H.-W. Hammer, U.-G. Meißner, arXiv:1304.2882 [hep-ph]

  10. C.-Y. Cui, Y.-L. Liu, W.-B. Chen, M.-Q. Huang, arXiv:1304.1850 [hep-ph]

  11. J.-R. Zhang, arXiv:1304.5748 [hep-ph]

  12. M.B. Voloshin, Phys. Rev. D 87, 091501(R) (2013). arXiv:1304.0380 [hep-ph]

    Article  ADS  Google Scholar 

  13. W. Jaus, Phys. Rev. D 41, 3394 (1990)

    Article  ADS  Google Scholar 

  14. W. Jaus, Phys. Rev. D 44, 2851 (1991)

    Article  ADS  Google Scholar 

  15. W. Jaus, Phys. Rev. D 60, 054026 (1999)

    Article  ADS  Google Scholar 

  16. C.R. Ji, P.L. Chung, S.R. Cotanch, Phys. Rev. D 45, 4214 (1992)

    Article  ADS  Google Scholar 

  17. H.-Y. Cheng, C.-K. Chua, C.-W. Hwang, Phys. Rev. D 70, 034007 (2004). hep-ph/0403232

    Article  ADS  Google Scholar 

  18. H.W. Ke, X.Q. Li, Z.T. Wei, Phys. Rev. D 77, 014020 (2008). arXiv:0710.1927 [hep-ph]

    Article  ADS  Google Scholar 

  19. Z.T. Wei, H.W. Ke, X.Q. Li, Phys. Rev. D 80, 094016 (2009). arXiv:0909.0100 [hep-ph]

    Article  ADS  Google Scholar 

  20. H.-W. Ke, X.-H. Yuan, X.-Q. Li, Z.-T. Wei, Y.-X. Zhang, Phys. Rev. D 86, 114005 (2012). arXiv:1207.3477 [hep-ph]

    Article  ADS  Google Scholar 

  21. H.W. Ke, X.Q. Li, Z.T. Wei, Phys. Rev. D 80, 074030 (2009). arXiv:0907.5465 [hep-ph]

    Article  ADS  Google Scholar 

  22. H.W. Ke, X.Q. Li, Z.T. Wei, Eur. Phys. J. C 69, 133 (2010). arXiv:0912.4094 [hep-ph]

    Article  ADS  Google Scholar 

  23. H.W. Ke, X.H. Yuan, X.Q. Li, Int. J. Mod. Phys. A 26, 4731 (2011). arXiv:1101.3407 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  24. H.W. Ke, X.Q. Li, Eur. Phys. J. C 71, 1776 (2011). arXiv:1104.3996 [hep-ph]

    Article  ADS  Google Scholar 

  25. H.Y. Cheng, C.Y. Cheung, C.W. Hwang, Phys. Rev. D 55, 1559 (1997). arXiv:hep-ph/9607332

    Article  ADS  Google Scholar 

  26. G. Li, F.l. Shao, W. Wang, Phys. Rev. D 82, 094031 (2010). arXiv:1008.3696 [hep-ph]

    Article  ADS  Google Scholar 

  27. H.Y. Cheng, C.K. Chua, C.W. Hwang, Phys. Rev. D 69, 074025 (2004)

    Article  ADS  Google Scholar 

  28. C.W. Hwang, Z.T. Wei, J. Phys. G 34, 687 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  29. C.D. Lu, W. Wang, Z.T. Wei, Phys. Rev. D 76, 014013 (2007). arXiv:hep-ph/0701265

    Article  ADS  Google Scholar 

  30. H.M. Choi, Phys. Rev. D 75, 073016 (2007). arXiv:hep-ph/0701263

    Article  ADS  Google Scholar 

  31. H.-W. Ke, X.-Q. Li, Y.-L. Shi, Phys. Rev. D 87, 054022 (2013). arXiv:1301.4014 [hep-ph]

    Article  ADS  Google Scholar 

  32. H.W. Ke, X.Q. Li, Z.T. Wei, X. Liu, Phys. Rev. D 82, 034023 (2010). arXiv:1006.1091 [hep-ph]

    Article  ADS  Google Scholar 

  33. K.L. Haglin, Phys. Rev. C 61, 031902 (2000)

    Article  ADS  Google Scholar 

  34. Y.-S. Oh, T. Song, S.H. Lee, Phys. Rev. C 63, 034901 (2001). nucl-th/0010064

    Article  ADS  Google Scholar 

  35. Z.-W. Lin, C.M. Ko, Phys. Rev. C 62, 034903 (2000)

    Article  ADS  Google Scholar 

  36. A. Deandrea, G. Nardulli, A.D. Polosa, Phys. Rev. D 68, 034002 (2003). hep-ph/0302273

    Article  ADS  Google Scholar 

  37. C. Meng, K.-T. Chao, Phys. Rev. D 75, 114002 (2007). hep-ph/0703205

    Article  ADS  Google Scholar 

  38. X.-H. Yuan, H.-W. Ke, X. Liu, X.-Q. Li, Phys. Rev. D 87, 014019 (2013). arXiv:1210.3686 [hep-ph]

    Article  ADS  Google Scholar 

  39. X.H. Guo, X.H. Wu, Phys. Rev. D 76, 056004 (2007). arXiv:0704.3105 [hep-ph]

    Article  ADS  Google Scholar 

  40. H.-W. Ke, X.-Q. Li, Y.-L. Shi, G.-L. Wang, X.-H. Yuan, J. High Energy Phys. 1204, 056 (2012). arXiv:1202.2178 [hep-ph]

    Article  ADS  Google Scholar 

  41. J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  42. I.W. Lee, A. Faessler, T. Gutsche, V.E. Lyubovitskij, Phys. Rev. D 80, 094005 (2009). arXiv:0910.1009 [hep-ph]

    Article  ADS  Google Scholar 

  43. H.W. Ke, X.Q. Li, Phys. Rev. D 84, 114026 (2011). arXiv:1107.0443 [hep-ph]

    Article  ADS  Google Scholar 

  44. Y. Dong, A. Faessler, T. Gutsche, V.E. Lyubovitskij, arXiv:1306.0824 [hep-ph]

  45. C.Z. Yuan, Talk presented at The XXVI International Symposium on Lepton–Photon Interactions at High Energies, San Francisco, USA, June 25, 2013

Download references

Acknowledgements

We thank Dr. C.X. Yu and Dr. Y.P. Guo for introducing some details about the measurements to us and drawing our attention to Dr. Yuan’s talk at the lepton–photon conference. This work is supported by the National Natural Science Foundation of China (NNSFC) under the contract No. 11075079 and No. 11005079; the Special Grant for the Ph.D. program of Ministry of Eduction of P.R. China No. 20100032120065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Ke.

Appendices

Appendix A: The vertex function of molecular state

Supposing Z c (3900) and Z c (4030) are molecular states which consists of D and \(\bar{D^{*}}\) and D and \(\bar{D^{*}}\), respectively. If the orbital angular momentum between the two components is zero, i.e. l=0, the total spin S should be 0, 1, and 2 and total angular momentum J also is 0, 1, and 2.

Similar to our previous works on baryons [1820], we construct the vertex function of molecular in the same model. The wavefunction of a molecular with total spin J and momentum P is

$$\begin{aligned} & \bigl|X(P,J,J_z)\bigr\rangle \\ &\quad =\int\bigl\{d^3 \tilde{p}_1\bigr\} \bigl\{d^3\tilde{p}_2\bigr\} \, 2(2\pi)^3\delta^3(\tilde{P}-\tilde{p_1}- \tilde{p_2}) \\ &\qquad {}\times\sum_{\lambda_1}\varPsi^{SS_z}( \tilde{p}_1,\tilde {p}_2,\lambda_1, \lambda_2) \\ &\qquad {}\times\mathcal{F}\bigl \vert D^{(*)}(p_1, \lambda_1) \bar{D}^*(p_2,\lambda_2)\bigr\rangle , \end{aligned}$$
(A.1)

with

$$\begin{aligned} & \varPsi^{SS_z}(\tilde{p}_1,\tilde{p}_2, \lambda_1,\lambda_2)\\ &\quad = \langle \lambda_1 \vert \mathcal{R}^{\dagger}_M(x_1,k_{1\perp},m_1) \vert s_1 \rangle \langle \lambda_2 \vert \mathcal {R}^{\dagger}_M(x_2,k_{2\perp},m_2) \vert s_2 \rangle \\ &\qquad {}\times \langle 1s_1 ;1 s_2\vert S S_z \rangle \langle S S_z ;0 0\vert J J_z \rangle \varphi(x,k_{\perp}), \end{aligned}$$

where 〈1s 1;1s 2|SS z 〉〈SS z ;00|JJ z 〉 is the C-G coefficients and s 1,s 2 are the spin projections of the constituents. These C-G coefficients can be rewritten as

$$ \begin{aligned} &\langle 1s_1;0 0|S S_z\rangle \langle S S_z ;0 0|1 J_z\rangle =A_{10} \epsilon_{1}(s_1)\cdot \epsilon(J_z), \\ &\langle 0 0;1s_2|S S_z\rangle \langle S S_z ;0 0|1 J_z\rangle =A_{01} \epsilon_{2}(s_2)\cdot \epsilon(J_z), \\ &\langle 1s_1 ;1 s_2|S S_z\rangle \langle S S_z ;0 0|0 0\rangle =A_0 \epsilon_{1}(s_1) \cdot \epsilon_{2}(s_2), \\ &\langle 1s_1 ;1 s_2|S S_z\rangle \langle S S_z ;0 0|1 J_z\rangle\\ &\quad =A_1 \varepsilon^{\mu\nu\alpha\beta} \epsilon_{1\mu}(s_1) \epsilon_{2\nu}(s_2)\epsilon_{\alpha}(J_z)P_\beta, \\ &\langle 1s_1 ;1 s_2|S S_z\rangle \langle S S_z ;0 0|2 J_z\rangle\\ &\quad =A_2 \epsilon_{1\mu}(s_1) \epsilon_{2\nu}(s_2) \epsilon^{\mu\nu}(J_z), \end{aligned} $$
(A.2)

with

$$\begin{aligned} &A_{01}=\frac{\sqrt{3}m_1}{\sqrt{e_1^2+2m_1^2}}, \\ & A_{10}=\frac{\sqrt{3}m_2}{\sqrt{e_2^2+2m_2^2}}, \\ &A_0=\frac{2 {m_1} {m_2}}{\sqrt{{M_0'}^4-2 {M_0'}^2 ({m_1}^2+{m_2}^2)+{m_1}^4+10 {m_1}^2 {m_2}^2+{m_2}^4}}, \\ & A_1=\frac{2\sqrt{3} {m_1} {m_2}}{\sqrt{{M'}^2 [4 {e_1}^2 {m_2}^2-4 {e_1} {e_2} (-{M_0'}^2+{m_1}^2+{m_2}^2)+4 {e_2}^2 {m_1}^2+10 {m_1}^2 {m_2}^2-C_A]}} , \\ &A_2=\frac{\sqrt{120} {m_1} {m_2}}{\sqrt{4 {e_1}^2 (4 {e_2}^2+7 {m_2}^2)+4 {e_1} {e_2} (-{M_0'}^2+{m_1}^2+{m_2}^2)+28 {e_2}^2 {m_1}^2+54 {m_1}^2 {m_2}^2+C_A}}, \\ &C_A={M_0'}^4-2 {M_0'}^2 \bigl({m_1}^2+{m_2}^2 \bigr)+{m_1}^4+{m_2}^4. \end{aligned}$$

A Melosh transformation brings the matrix elements from the spin-projection-on-fixed-axes representation into the helicity representation and is explicitly written as

$$\langle \lambda_2\vert \mathcal{R}^{\dagger}_M(x_2,k_{2\perp},m_2) \vert s_2 \rangle =\xi^*(\lambda_2,m_2) \cdot\xi(s_2,m_2), $$

and

$$\langle \lambda_1\vert \mathcal{R}^{\dagger}_M(x_1,k_{1\perp},m_1) \vert s_1 \rangle =\xi^*(\lambda_1,m_1) \cdot\xi(s_1,m_1). $$

Following Refs. [1315, 27], the Melosh transformed matrix can be expressed as

$$\begin{aligned} & \langle \lambda_1|\mathcal{R}^{\dagger}_M(x_1,k_{1\perp},m_1) |s_1\rangle \langle \lambda_2| \mathcal{R}^{\dagger }_M(x_2,k_{2\perp},m_2) |s_2\rangle \\ &\qquad {}\times\langle 1s_1 ;1 s_2|S S_z\rangle \langle S S_z ;0 0|J J_z\rangle \\ &\quad =A_1 \varepsilon^{\mu\nu\alpha\beta} \epsilon_{1\mu}( \lambda_1) \epsilon_{2\nu}(\lambda_2) \epsilon_{\alpha}(J_z)P_\beta, \end{aligned}$$
(A.3)

so the wavefunction of 1+ molecular state of \(D^{(*)}\bar{D}^{*}\) is

$$\begin{aligned} & \varPsi^{SS_z}(\tilde{p}_1,\tilde{p}_2, \lambda_1,\lambda_2) \\ &\quad = A_1 \varphi(x,k_{\perp}) \varepsilon^{\mu\nu\alpha\beta} \epsilon_{1\mu}( \lambda_1) \epsilon_{2\nu}(\lambda_2) \epsilon_{\alpha}(J_z)P_\beta \\ &\quad =h_{A_1}' \varepsilon^{\mu\nu\alpha\beta} \epsilon_{1\mu}(\lambda_1) \epsilon_{2\nu}( \lambda_2)\epsilon_{\alpha}(J_z)P_\beta, \end{aligned}$$
(A.4)

with \(\varphi=4(\frac{\pi}{\beta^{2}})^{3/4}\frac{e_{1}e_{2}}{x_{1}x_{2}M_{0}}{\rm exp}(\frac{-\mathbf{k}^{2}}{2\beta^{2}})\).

Similarly the wavefunction of 1+ molecular state of \(D\bar{D}^{*}\)

$$\begin{aligned} \varPsi^{SS_z}(\tilde{p}_1,\tilde{p}_2, \lambda_1,\lambda_2) &= A\varphi(x,k_{\perp}) \epsilon_{1\mu}(\lambda_1) \cdot\epsilon_{\alpha}(J_z) \\ & =h_{A_1}' \epsilon_{1\mu}( \lambda_1) \cdot\epsilon_{\alpha}(J_z) \end{aligned}$$
(A.5)

and normalization of the state is |X(P,J,J z )〉,

$$\begin{aligned} & \bigl\langle X\bigl(P',J',J_z' \bigr)\big|X(P,J,J_z)\bigr\rangle \\ &\quad =2(2\pi)^3P^+ \delta^3\bigl(\tilde{P}'-\tilde{P}\bigr) \delta_{J'J}\delta_{J'_zJ_z}. \end{aligned}$$
(A.6)

All other notations can be found in Refs. [1820].

Appendix B: The effective vertices

The effective vertices can be found in [3337],

$$\begin{aligned} &\mathcal{L}_{\pi DD^*}=ig_{_{\pi DD^*}} \bigl(D^{*\mu}\partial_\mu\pi \bar{D} - \partial^\mu D \pi\bar{D}^{*}_\mu+h.c.\bigr) , \end{aligned}$$
(B.1)
$$\begin{aligned} &\mathcal{L}_{\pi D^*D^*}=-g_{_{\pi D^*D^*}}\varepsilon^{\mu\nu \alpha\beta} \partial^\mu\bar{D}^*_\nu\pi\partial_\alpha D^{*\beta}, \end{aligned}$$
(B.2)
$$\begin{aligned} &\mathcal{L}_{\psi DD}=ig_{_{\psi DD}}\psi_\mu\bigl(\partial ^\mu D\bar{D} - D\partial^\mu \bar{D}\bigr) , \end{aligned}$$
(B.3)
$$\begin{aligned} &\mathcal{L}_{\psi DD^*}=-g_{_{\psi DD^*}}\varepsilon^{\mu\nu\alpha \beta} \partial^\mu\psi_\nu \bigl[{\partial}_\beta D^*_\alpha\bar{D}+D{ \partial}_\beta\bar{D}^*_\alpha \bigr], \end{aligned}$$
(B.4)
$$\begin{aligned} &\mathcal{L}_{\psi D^*D^*}=ig_{_{\psi D^*D^*}} \bigl[-\psi^\mu D^{*\nu}(\overrightarrow{\partial}-\overleftarrow {\partial})_\mu D_\nu^{*\dagger} \\ &\hphantom{\mathcal{L}_{\psi D^*D^*}=}{}+ \psi^\mu D^{*\nu}{ \partial}_\nu D_\mu^{*\dagger}-\psi^\mu { \partial}_\nu D^{*\mu} D_\nu^{*\dagger}\bigr], \end{aligned}$$
(B.5)
$$\begin{aligned} & \mathcal{L}_{\sigma DD}=-g_{_{\sigma DD}}\sigma D\bar{D}, \end{aligned}$$
(B.6)
$$\begin{aligned} &\mathcal{L}_{\sigma D^*D^*}=g_{_{\sigma D^*D^*}}\sigma D^* \cdot \bar{D}^*. \end{aligned}$$
(B.7)

The effective vertices η c DD and η c D D are similar to those in Eq. (B.1) and Eq. (B.2) and the effective vertices ρDD, ρDD , and ρD D can be obtained by replacing the ψ by ρ in Eq. (B.3) and Eq. (B.4).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, HW., Wei, ZT. & Li, XQ. Is Z c (3900) a molecular state?. Eur. Phys. J. C 73, 2561 (2013). https://doi.org/10.1140/epjc/s10052-013-2561-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2561-0

Keywords

Navigation