Skip to main content
Log in

The radiative decays \(B_{c}^{*\pm} \to B_{c}^{\pm} \gamma\) with QCD sum rules

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this article, we calculate the \(B_{c}^{*} \to B_{c}\) electromagnetic form-factor with the three-point QCD sum rules and then study the radiative decays \(B_{c}^{*\pm} \to B_{c}^{\pm} \gamma\). Experimentally, we can study the radiative transitions using the decay cascades \(B_{c}^{*\pm}\to B_{c}^{\pm} \gamma\to J/\psi\ell^{\pm}\bar{\nu}_{\ell} \gamma\to\mu^{+} \mu^{-} \ell^{\pm}\bar{\nu}_{\ell} \gamma\) in the future at the LHCb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Abulencia et al., Phys. Rev. Lett. 97, 012002 (2006)

    Article  ADS  Google Scholar 

  2. V. Abazov et al., Phys. Rev. Lett. 102, 092001 (2009)

    Article  ADS  Google Scholar 

  3. T. Aaltonen et al., Phys. Rev. Lett. 100, 182002 (2008)

    Article  ADS  Google Scholar 

  4. V.M. Abazov et al., Phys. Rev. Lett. 101, 012001 (2008)

    Article  ADS  Google Scholar 

  5. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  6. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979)

    Article  ADS  Google Scholar 

  7. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985)

    Article  ADS  Google Scholar 

  8. P. Colangelo, A. Khodjamirian, arXiv:hep-ph/0010175

  9. E. Bagan, H.G. Dosch, P. Gosdzinsky, S. Narison, J.M. Richard, Z. Phys. C 64, 57 (1994)

    Article  ADS  Google Scholar 

  10. P. Colangelo, G. Nardulli, N. Paver, Z. Phys. C 57, 43 (1993)

    Article  ADS  Google Scholar 

  11. V.V. Kiselev, A.K. Likhoded, A.I. Onishchenko, Nucl. Phys. B 569, 473 (2000)

    Article  ADS  Google Scholar 

  12. V.V. Kiselev, Int. J. Mod. Phys. A 11, 3689 (1996)

    Article  ADS  Google Scholar 

  13. V.V. Kiselev, A.E. Kovalsky, A.K. Likhoded, Nucl. Phys. B 585, 353 (2000)

    Article  ADS  Google Scholar 

  14. T.M. Aliev, M. Savci, Eur. Phys. J. C 47, 413 (2006)

    Article  ADS  Google Scholar 

  15. N. Ghahramany, R. Khosravi, K. Azizi, Phys. Rev. D 78, 116009 (2008)

    Article  ADS  Google Scholar 

  16. K. Azizi, R. Khosravi, V. Bashiry, Eur. Phys. J. C 56, 357 (2008)

    Article  ADS  Google Scholar 

  17. K. Azizi, F. Falahati, V. Bashiry, S.M. Zebarjad, Phys. Rev. D 77, 114024 (2008)

    Article  ADS  Google Scholar 

  18. K. Azizi, R. Khosravi, Phys. Rev. D 78, 036005 (2008)

    Article  ADS  Google Scholar 

  19. N. Ghahramany, R. Khosravi, K. Azizi, Phys. Rev. D 78, 116009 (2008)

    Article  ADS  Google Scholar 

  20. K. Azizi, H. Sundu, M. Bayar, Phys. Rev. D 79, 116001 (2009)

    Article  ADS  Google Scholar 

  21. Z.G. Wang, arXiv:1209.1157

  22. S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, A.V. Tkabladze, Phys. Rev. D 51, 3613 (1995)

    Article  ADS  Google Scholar 

  23. S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, A.V. Tkabladze, Phys. Usp. 38, 1 (1995)

    Article  ADS  Google Scholar 

  24. E.J. Eichten, C. Quigg, Phys. Rev. D 49, 5845 (1994)

    Article  ADS  Google Scholar 

  25. L.P. Fulcher, Phys. Rev. D 60, 074006 (1999)

    Article  ADS  Google Scholar 

  26. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 67, 014027 (2003)

    Article  ADS  Google Scholar 

  27. S. Godfrey, Phys. Rev. D 70, 054017 (2004)

    Article  ADS  Google Scholar 

  28. B.L. Ioffe, A.V. Smilga, Nucl. Phys. B 216, 373 (1983)

    Article  ADS  Google Scholar 

  29. D.S. Du, J.W. Li, M.Z. Yang, Eur. Phys. J. C 37, 173 (2004)

    Article  ADS  Google Scholar 

  30. Z.G. Wang, arXiv:1203.6252

  31. V.V. Braguta, A.I. Onishchenko, Phys. Lett. B 591, 267 (2004)

    Article  ADS  Google Scholar 

  32. V.V. Braguta, A.I. Onishchenko, Phys. Rev. D 70, 033001 (2004)

    Article  ADS  Google Scholar 

  33. V.A. Novikov, L.B. Okun, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Phys. Rep. 41, 1 (1978)

    Article  ADS  Google Scholar 

  34. M. Chabab, Phys. Lett. B 325, 205 (1994)

    Article  ADS  Google Scholar 

  35. S. Narison, Phys. Lett. B 210, 238 (1988)

    Article  ADS  Google Scholar 

  36. V.V. Kiselev, A.V. Tkabladze, Phys. Rev. D 48, 5208 (1993)

    Article  ADS  Google Scholar 

  37. J. Beringer et al., Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  38. B.D. Jones, R.M. Woloshyn, Phys. Rev. D 60, 014502 (1999)

    Article  ADS  Google Scholar 

  39. V.V. Kiselev, Cent. Eur. J. Phys. 2, 523 (2004)

    Article  Google Scholar 

  40. S.M. Ikhdair, R. Sever, Int. J. Mod. Phys. A 21, 6699 (2006)

    Article  ADS  MATH  Google Scholar 

  41. H.M. Choi, C.R. Ji, Phys. Rev. D 80, 054016 (2009)

    Article  ADS  Google Scholar 

  42. C.W. Hwang, Phys. Rev. D 81, 114024 (2010)

    Article  ADS  Google Scholar 

  43. R.C. Verma, J. Phys. G 39, 025005 (2012)

    Article  ADS  Google Scholar 

  44. A.M. Badalian, B.L.G. Bakker, Yu.A. Simonov, Phys. Rev. D 75, 116001 (2007)

    Article  ADS  Google Scholar 

  45. G. Cvetic, C.S. Kim, G.L. Wang, W. Namgung, Phys. Lett. B 596, 84 (2004)

    Article  ADS  Google Scholar 

  46. G.L. Wang, Phys. Lett. B 633, 492 (2006)

    Article  ADS  Google Scholar 

  47. S.S. Gershtein, M.Yu. Khlopov, JETP Lett. 23, 338 (1976)

    ADS  Google Scholar 

  48. M.Yu. Khlopov, Sov. J. Nucl. Phys. 28, 583 (1978)

    Google Scholar 

  49. A.A. Penin, A. Pineda, V.A. Smirnov, M. Steinhauser, Phys. Lett. B 593, 124 (2004)

    Article  ADS  Google Scholar 

  50. S. Narison, Phys. Lett. B 693, 559 (2010)

    Article  ADS  Google Scholar 

  51. S. Narison, Phys. Lett. B 706, 412 (2012)

    Article  ADS  Google Scholar 

  52. S. Narison, Phys. Lett. B 707, 259 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation, Grant Number 11075053, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Wang.

Appendix

Appendix

The explicit expressions of the \(I_{0}^{ijn}\), \(I_{10}^{ijn}\), \(I_{01}^{ijn}\), \(J_{0}^{ijn}\), \(J_{10}^{ijn}\), \(J_{01}^{ijn}\),

$$\begin{aligned} iI_0^{ijn} =&B_{-p_1^2\rightarrow M_1^2}B_{-p_2^2\rightarrow M_2^2} \overline{I}_{ijn} \\ =&B_{P_1^2\rightarrow M_1^2}B_{P_2^2\rightarrow M_2^2}\frac {(-1)^{i+j+n}i}{\varGamma(i)\varGamma(j)\varGamma(n)} \\ &{}\times \int d^4K \int_0^\infty d\alpha\, d\beta\, d\gamma\, \alpha^{i-1}\beta^{j-1}\gamma^{n-1} \\ &{}\times\exp \bigl\{ -\alpha(K+P_1)^2- \beta(K+P_2)^2 \\ &{} -\gamma K^2-\alpha m_b^2-\beta m_b^2-\gamma m_c^2 \bigr\} \\ =&\frac{(-1)^{i+j+n}i\pi^2}{\varGamma(i)\varGamma(j)\varGamma (n)(M_1^2)^i(M_2^2)^j (M^2)^{n-2}} \\ &{}\times \int_0^1 d\lambda \frac{\lambda ^{1-i-j}}{(1-\lambda)^{n-1}} \\ &{} \times\exp \biggl\{ -\frac{(1-\lambda)Q^2}{\lambda (M_1^2+M_2^2)}-\frac{m_b^2}{\lambda M^2}- \frac{m_c^2}{(1-\lambda )M^2} \biggr\} \\ =&\frac{(-1)^{i+j+n}i\pi^2}{\varGamma(i)\varGamma(j)\varGamma (n)(M_1^2)^i(M_2^2)^j (M^2)^{n-2}} \\ &{} \times \int_0^\infty d\tau(\tau +1)^{i+j+n-4}\tau^{1-i-j} \\ &{}\times\exp \biggl\{ -\frac{ 1}{\tau} \biggl(\frac {Q^2}{M_1^2+M_2^2}+ \frac{m_b^2}{M^2} \biggr) \\ &{}-\frac{m_b^2+m_c^2}{ M^2}-\tau\frac{m_c^2}{M^2} \biggr\} , \end{aligned}$$
(A.1)
$$\begin{aligned} iI^\mu_{ijn} =&B_{-p_1^2\rightarrow M_1^2}B_{-p_2^2\rightarrow M_2^2} \overline{I}^\mu_{ijn} \\ =&\frac{(-1)^{i+j+n+1}i\pi^2}{\varGamma(i)\varGamma(j)\varGamma (n)(M_1^2)^{i+1}(M_2^2)^j (M^2)^{n-3}} \\ &{}\times \int_0^\infty d\tau(\tau +1)^{i+j+n-3}\tau^{1-i-j} \\ &{}\times\exp \biggl\{ -\frac{ 1}{\tau} \biggl(\frac {Q^2}{M_1^2+M_2^2}+ \frac{m_b^2}{M^2} \biggr) \\ &{} -\frac{m_b^2+m_c^2}{ M^2}-\tau\frac{m_c^2}{M^2} \biggr \}p_{1}^\mu \\ &{}+\frac{(-1)^{i+j+n+1}i\pi^2}{\varGamma(i)\varGamma(j)\varGamma (n)(M_1^2)^i(M_2^2)^{j+1} (M^2)^{n-3}} \\ &{}\times \int_0^\infty d\tau(\tau +1)^{i+j+n-3}\tau^{1-i-j} \\ &\times{}\exp \biggl\{ -\frac{ 1}{\tau} \biggl(\frac {Q^2}{M_1^2+M_2^2}+ \frac{m_b^2}{M^2} \biggr) \\ &{} -\frac{m_b^2+m_c^2}{ M^2}-\tau\frac{m_c^2}{M^2} \biggr \}p_{2}^\mu \\ =&iI_{10}^{ijn}p_{1}^\mu+iI_{01}^{ijn}p_{2}^\mu , \end{aligned}$$
(A.2)
$$\begin{aligned} \begin{aligned} &J_0^{ijn}=I_0^{ijn}\big|_{m_b\leftrightarrow m_c} , \\ &J_{10}^{ijn}=I_{10}^{ijn}\big|_{m_b\leftrightarrow m_c} , \\ &J_{01}^{ijn}=I_{01}^{ijn}\big|_{m_b\leftrightarrow m_c}, \\ &M^2=\frac{M_1^2M_2^2}{M_1^2+M_2^2} , \end{aligned} \end{aligned}$$
(A.3)

where we have used the Borel transform \(B_{P^{2}\rightarrow M^{2}} \exp (-\alpha P^{2})=\delta(1-\alpha M^{2})\). Those analytical expressions are slightly different from that obtained in [11]; they are both correct.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZG. The radiative decays \(B_{c}^{*\pm} \to B_{c}^{\pm} \gamma\) with QCD sum rules. Eur. Phys. J. C 73, 2559 (2013). https://doi.org/10.1140/epjc/s10052-013-2559-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2559-7

Keywords

Navigation