Skip to main content
Log in

The role of the Seiberg–Witten field redefinition in renormalization of noncommutative chiral electrodynamics

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

It has been conjectured in the literature that renormalizability of the θ-expanded noncommutative gauge theories improves when one takes into account full nonuniqueness of the Seiberg–Witten expansion which relates noncommutative (‘high-energy’) with commutative (‘low-energy’) fields. In order to check this conjecture we analyze renormalizability of the θ-expanded noncommutative chiral electrodynamics by quantizing the action which contains all terms implied by this nonuniqueness. After renormalization we arrive at a different theory, characterized by different relations between the coupling constants: this means that the θ-expanded noncommutative chiral electrodynamics is not renormalizable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.S. Snyder, Phys. Rev. 71, 38 (1947)

    Article  ADS  MATH  Google Scholar 

  2. S. Minwalla, M. Van Raamsdonk, N. Seiberg, J. High Energy Phys. 0002, 020 (2000)

    Article  ADS  Google Scholar 

  3. M. Hayakawa, Phys. Lett. B 478, 394 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. A. Matusis, L. Susskind, N. Toumbas, J. High Energy Phys. 0012, 002 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Van Raamsdonk, N. Seiberg, J. High Energy Phys. 0003, 035 (2000)

    Article  Google Scholar 

  6. A. Armoni, Nucl. Phys. B 593, 229 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. N. Seiberg, E. Witten, J. High Energy Phys. 09, 032 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Madore, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J. C 16, 161 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  9. B. Jurco, L. Moller, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J. C 21, 383 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. P. Schupp, J. Trampetic, J. Wess, G. Raffelt, Eur. Phys. J. C 36, 405 (2004)

    Article  ADS  Google Scholar 

  11. K. Ulker, B. Yapiskan, Phys. Rev. D 77, 065006 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  12. P. Aschieri, L. Castellani, J. High Energy Phys. 1207, 184 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Asakawa, I. Kishimoto, J. High Energy Phys. 9911, 024 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Bichl, J. Grimstrup, H. Grosse, L. Popp, M. Schweda, R. Wulkenhaar, J. High Energy Phys. 06, 013 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Buric, D. Latas, V. Radovanovic, J. High Energy Phys. 0602, 046 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Latas, V. Radovanovic, J. Trampetic, Phys. Rev. D 76, 085006 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Buric, V. Radovanovic, J. Trampetic, J. High Energy Phys. 0703, 030 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Wulkenhaar, J. High Energy Phys. 0203, 024 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Buric, V. Radovanovic, Class. Quantum Gravity 22, 525 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. M. Buric, D. Latas, V. Radovanovic, J. Trampetic, Phys. Rev. D 77, 045031 (2008)

    Article  ADS  Google Scholar 

  21. M. Buric, D. Latas, V. Radovanovic, J. Trampetic, Phys. Rev. D 83, 045023 (2011)

    Article  ADS  Google Scholar 

  22. C.P. Martin, C. Tamarit, Phys. Rev. D 80, 065023 (2009)

    Article  ADS  Google Scholar 

  23. C.P. Martin, C. Tamarit, J. High Energy Phys. 0912, 042 (2009)

    Article  ADS  Google Scholar 

  24. C. Tamarit, Phys. Rev. D 81, 025006 (2010)

    Article  ADS  Google Scholar 

  25. A. Armoni, Phys. Lett. B 704, 627 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Banerjee, S. Ghosh, Phys. Lett. B 533, 162 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. C.P. Martin, Nucl. Phys. B 652, 72 (2003)

    Article  ADS  MATH  Google Scholar 

  28. P. Aschieri, B. Jurco, P. Schupp, J. Wess, Nucl. Phys. B 651, 45 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. J.M. Grimstrup, R. Wulkenhaar, Eur. Phys. J. C 26, 139 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Serbian Ministry of Education, Science and Technological Development under Grant No. ON171031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voja Radovanović.

Appendix: One-loop divergences

Appendix: One-loop divergences

All calculations mentioned in the text are done actually using the Majorana spinors and the algebra of γ-matrices. The direct outcome of calculation for the Lagrangian containing only one spinor field is

$$\begin{aligned} {\varGamma}^{(1)}_{\rm div} =& \frac{1}{(4\pi)^2 \varepsilon} q^2 \int{\rm d}^4 x \biggl( {\rm i}\bar{\psi}\gamma^\mu(\partial_\mu- {\rm i} q \gamma_5 A_\mu) \psi \\ &{}-\frac{1}{3}F_{\mu\nu}F^{\mu\nu} + \theta^{\mu\nu} \biggl( \frac{\rm i}{12} {\varepsilon _{\mu\nu\rho\sigma}} \bar{\psi}\gamma^\sigma D^\rho D^\tau D_\tau\psi \\ & {}+q \biggl( \frac{2}{3} F_{\mu\rho}F_{\nu \sigma} F^{\rho\sigma} - \frac{1}{6} F_{\mu\nu}F_{\rho\sigma} F^{\rho\sigma} \\ &{}-\frac{5\rm i}{6} F_{\mu\rho} \bar{\psi}\gamma^\rho D_\nu \psi+ \frac{\rm i}{6} F_{\mu\rho} \bar{\psi}\gamma_\nu D^\rho\psi \\ & {}+ \frac{2\rm i}{3} F_{\mu\nu} \bar{\psi}\gamma^\rho D_\rho\psi+\frac{1}{6} {\varepsilon_{\mu\rho\sigma\tau}} F^{\rho\sigma} \bar{\psi}\gamma_5 \gamma^\tau D_\nu\psi \\ &{}-\frac{7}{8} {\varepsilon_{\mu\nu \rho\sigma}} F^{\rho\sigma} \bar{\psi}\gamma_5 \gamma^\tau D_\tau\psi \biggr) \\ &{}+\kappa_2 \biggl( \frac{\rm i}{12} { \varepsilon_{\mu\nu\rho \sigma}} \bar{\psi}\gamma^\sigma D^\rho D^\tau D_\tau\psi \\ & {}+q \biggl( \frac{2}{3} F_{\mu\rho}F_{\nu\sigma} F^{\rho \sigma} - \frac{1}{6} F_{\mu\nu}F_{\rho\sigma} F^{\rho\sigma} \\ &{}+\frac{\rm i}{2} F_{\mu\rho} \bar{\psi}\gamma^\rho D_\nu\psi - \frac{3\rm i}{2} F_{\mu\rho} \bar{\psi}\gamma_\nu D^\rho\psi \\ &{} +\frac{5}{36} { \varepsilon_{\mu\rho\sigma\tau}} F^{\rho\sigma} \bar{\psi}\gamma_5 \gamma^\tau D_\nu\psi \\ & {} - \frac{1}{8} {\varepsilon_{\mu\nu\rho\sigma}} F^{\rho\sigma} \bar{\psi}\gamma _5 \gamma^\tau D_\tau\psi \biggr) \biggr) \\ & {}+\kappa_3 \biggl( -\frac{4 \rm i}{3} { \varepsilon_{\mu\nu \rho\sigma}} \bar{\psi}\gamma^\sigma D^\rho D^\tau D_\tau\psi \\ &{}+q \biggl(- \frac{16}{3} F_{\mu\rho}F_{\nu\sigma } F^{\rho\sigma} + \frac{4}{3} F_{\mu\nu}F_{\rho\sigma} F^{\rho\sigma} \\ & {}-\frac{10\rm i}{3} F_{\mu\rho} \bar{\psi}\gamma^\rho D_\nu \psi - \frac{34\rm i}{3} F_{\mu\rho} \bar{\psi}\gamma_\nu D^\rho \psi \\ &{}+ \frac{20\rm i}{3} F_{\mu\nu} \bar{\psi}\gamma^\rho D_\rho\psi-\frac{11}{3} {\varepsilon_{\mu\rho\sigma\tau}} F^{\rho\sigma} \bar{\psi}\gamma_5 \gamma^\tau D_\nu\psi \\ & {}+2 {\varepsilon_{\mu\nu\rho\sigma }} F^{\rho\sigma} \bar{\psi}\gamma_5 \gamma^\tau D_\tau\psi \biggr) \biggr) \\ & {}+\kappa_4 \biggl( -\frac{7 \rm i}{6} { \varepsilon_{\mu\nu \rho\sigma}} \bar{\psi}\gamma^\sigma D^\rho D^\tau D_\tau\psi \\ &{}+q \biggl(- \frac{8}{3} F_{\mu\rho}F_{\nu\sigma} F^{\rho\sigma} +\frac{2}{3} F_{\mu\nu}F_{\rho\sigma} F^{\rho\sigma} \\ & {}-\frac{10\rm i}{3} F_{\mu\rho} \bar{\psi}\gamma^\rho D_\nu \psi - \frac{13\rm i}{3} F_{\mu\rho} \bar{\psi}\gamma_\nu D^\rho \psi \\ &{}+ \frac{19\rm i}{6} F_{\mu\nu} \bar{\psi}\gamma^\rho D_\rho\psi \\ & {} +\frac{2}{3} {\varepsilon_{\mu\rho \sigma\tau}} F^{\rho\sigma} \bar{\psi}\gamma_5 \gamma^\tau D_\nu\psi \\ &{} - \frac{1}{4} {\varepsilon_{\mu\nu\rho\sigma}} F^{\rho\sigma} \bar{\psi}\gamma_5 \gamma^\tau D_\tau\psi \biggr) \biggr) \\ & {}+\kappa_5 \biggl( \frac{\rm i}{3} { \varepsilon_{\mu\nu\rho \sigma}} \bar{\psi}\gamma^\sigma D^\rho D^\tau D_\tau\psi \\ &{} +q \biggl(-\frac{4\rm i}{3} F_{\mu\rho} \bar{\psi}\gamma^\rho D_\nu\psi + \frac{2\rm i}{3} F_{\mu\rho} \bar{\psi}\gamma_\nu D^\rho \psi \\ & {}+ \frac{5\rm i}{3} F_{\mu\nu} \bar{\psi}\gamma^\rho D_\rho\psi+\frac{2}{3} { \varepsilon_{\mu\rho\sigma \tau}} F^{\rho\sigma} \bar{\psi}\gamma_5 \gamma^\tau D_\nu\psi \\ &{} - \frac{1}{2} { \varepsilon_{\mu\nu\rho\sigma}} F^{\rho\sigma} \bar{\psi}\gamma_5 \gamma^\tau D_\tau\psi \biggr) \biggr) \\ & {}+\kappa_6 \bigl(2 q {\varepsilon_{\mu\rho\sigma\tau}} F^{\rho\sigma} \bar{\psi}\gamma_5 \gamma^\tau D_\nu\psi \bigr) \\ & {}+\kappa_7 \biggl( -\frac{4\rm i}{3} { \varepsilon_{\mu\nu\rho \sigma}} \bar{\psi}\gamma^\sigma D^\rho D^\tau D_\tau\psi \\ &{} +q \biggl(\frac{4\rm i}{3} F_{\mu\rho} \bar{\psi}\gamma^\rho D_\nu \psi+ \frac{4\rm i}{3} F_{\mu\rho} \bar{\psi}\gamma_\nu D^\rho \psi \\ & {} - \frac{8\rm i}{3} F_{\mu\nu} \bar{\psi}\gamma^\rho D_\rho\psi -\frac{2}{3} { \varepsilon_{\mu \rho\sigma\tau}} F^{\rho\sigma} \bar{\psi}\gamma_5 \gamma^\tau D_\nu\psi \\ &{} + 2 {\varepsilon_{\mu\nu\rho\sigma}} F^{\rho\sigma} \bar{\psi}\gamma_5 \gamma^\tau D_\tau\psi \biggr) \biggr) \biggr) \biggr) . \end{aligned}$$
(A.1)

This result reduces to the result found before in [21] for κ i =0. One immediately notices that, apart from the usual commutative divergences and the 3-photon term , all other terms are electron-photon interactions and they should be converted to the ‘canonical’ . Partial integrations and other transformations based on the spinor identities, succeeded by the change from the Majorana to the chiral form, give final expression (40).

In order to analyze the case with several matter fields let us first shortly discuss the corresponding noncommutative classical action. We assume that we have a set of fermions \(\hat{\varphi}_{i}\), i=1,…,N with electric charges q i . It is known [28] that in the θ-expanded theories each noncommutative field comes with its own noncommutative potential \(\hat{A}_{i}^{\mu}\); all of them, however, for θ=0 reduce to the same A μ. The \(\hat{A}_{i}^{\mu}\) are different because their corresponding SW maps differ: they depend on charges q i . Therefore in order to obtain the action with the correct limit, in the sum

(A.2)

we have to rescale the gauge fields and the charges, \(A^{\mu}_{i} \rightarrow\sqrt{c_{i}} A_{i}^{\mu}= \sqrt{c_{i}} A^{\mu}\), \(\ q_{i} \rightarrow\frac{1}{\sqrt{c_{i}}}q_{i}\). We get

(A.3)

In order to associate (A.3) with the Lagrangian of the usual commutative theory we fix the sum of weights c i to 1, \(\ \sum_{i=1}^{N} c_{i}=1\). In the noncommutative U(1) case we are free to choose c i =1/N; for other symmetries the analogous relations are more complicated, [17]. The same rescaling applied to the noncommutative part of the Lagrangian gives, for the boson vertex,

(A.4)

and clearly in an anomaly-safe model in which ∑ i q i =0 we find that this term vanishes, . Fermion terms are on the other hand unchanged as they are mutually independent for each field:

We can extract the value of the one-loop divergences from our previous result either using the same rescaling of charges q i by c i or straightforwardly, by repeating the calculation. We obtain for the renormalized Lagrangian:

with

$$\begin{aligned} \alpha_{i,2} =&\frac{1}{3}(-5+3\kappa_{i,2} - 20 \kappa_{i,3} - 20 \kappa_{i,4} - 8\kappa_{i,5} + 8 \kappa_{i,7}), \\ \alpha_{i,3} =&\frac{1}{12}(-1 -\kappa_{i,2} + 16 \kappa_{i,3} +14 \kappa_{i,4} -4\kappa_{i,5} +16 \kappa_{i,7}), \\ \alpha_{i,4} =&\frac{1}{6}(-1 + 9\kappa_{i,2}+ 68 \kappa_{i,3} + 26 \kappa_{i,4} - 4\kappa_{i,5} - 8 \kappa_{i,7}), \\ \alpha_{i,5} =&\frac{1}{4}(-1 - \kappa_{i,2} - 20 \kappa_{i,3} -6\kappa _{i,4} - 4 \kappa_{i,5} + 8 \kappa_{i,7}), \\ \alpha_{i,6} =&\frac{1}{36}(-6 -5 \kappa_{i,2}+ 132 \kappa_{i,3} -24 \kappa_{i,4}- 24 \kappa_{i,5}\\ &{} - 72 \kappa_{i,6} + 24 \kappa _{i,7}), \\ \alpha_{i,7} =&\frac{1}{8}(7 +\kappa_{i,2} -16 \kappa_{i,3} + 2\kappa _{i,4} + 4\kappa_{i,5} - 16 \kappa_{i,7}). \end{aligned}$$

While renormalization of fields and charges is standard,

$$\begin{aligned} &\varphi_{i,0}=\sqrt{Z_{i,2}}\varphi_i=\sqrt {1-2 \frac {q_i^2}{(4\pi)^2 \varepsilon}} \varphi_i, \\ &A^\mu_0=\sqrt{Z_3} A^\mu=\sqrt {1-\frac{4}{3} \frac{\sum_j q_j^2}{(4\pi)^2 \varepsilon}} A^\mu, \\ &q_{i,0}=\mu^{\frac{\varepsilon}{2}} Z_3^{-1/2}Z_{i,2}^{-1} \biggl(1-2 \frac{q_i^2}{(4\pi)^2 \varepsilon} \biggr) q_i\\ & \hphantom{q_{i,0}}= \mu^{\frac{\varepsilon}{2}} \biggl(1+\frac{2}{3} \frac{\sum_j q_j^2}{(4\pi)^2 \varepsilon} \biggr) q_i , \end{aligned}$$

the noncommutativity θ μν can renormalize arbitrarily. In order to try to use this fact we assume that it is of the form

$$\theta^{\mu\nu}_0= \biggl(1+\alpha \frac{\sum_j q_j^2}{(4\pi)^2 \varepsilon} \biggr) \theta^{\mu\nu}, $$

with an arbitrary coefficient α which is to be determined from some renormalizability constraint. Renormalization of the κ i follows:

$$\begin{aligned} (\kappa_{i,2})_0 =& \kappa_{i,2} - \frac{\alpha}{(4\pi)^2 \varepsilon} \biggl( (1+\kappa_{i,2}) \sum _j q_j^2+\frac{1}{3} (1 + 9\kappa_{i,2} \\ & {} - 20\kappa_{i,3} -20 \kappa_{i,4} -8 \kappa_{i,5} +8 \kappa_{i,7})q^2_i \biggr), \\ (\kappa_{i,3})_0 =& \kappa_{i,3} - \frac{\alpha}{(4\pi)^2 \varepsilon} \biggl( \kappa_{i,3} \sum _j q_j^2+ \frac{1}{12}(-1- \kappa_{i,2} \\ &{} +40 \kappa_{i,3} +14 \kappa_{i,4} - 4\kappa_{i,5} +16 \kappa_{i,7})q^2_i \biggr), \\ (\kappa_{i,4})_0 =& \kappa_{i,4} - \frac{\alpha}{(4\pi)^2 \varepsilon} \biggl(\kappa_{i,4} \sum _j q_j^2+ \frac{1}{6} (-1+9 \kappa_{i,2} \\ & {} +68 \kappa_{i,3} +38 \kappa_{i,4} - 4\kappa_{i,5} -8 \kappa_{i,7})q^2_i \biggr), \\ (\kappa_{i,5})_0 =& \kappa_{i,5} - \frac{\alpha}{(4\pi)^2 \varepsilon} \biggl( \kappa_{i,5} \sum _j q_j^2+ \frac{1}{4}(-1- \kappa_{i,2} \\ &{} -20 \kappa_{i,3} -6 \kappa_{i,4}+ 4 \kappa _{i,5} +8 \kappa_{i,7})q^2_i \biggr), \\ (\kappa_{i,6})_0 = &\kappa_{i,6} - \frac{\alpha}{(4\pi)^2 \varepsilon} \biggl( \kappa_{i,6} \sum _j q_j^2+\frac{1}{36}(-6-5 \kappa_{i,2} \\ & {} +132 \kappa_{i,3} -24\kappa _{i,4}- 24 \kappa_{i,5} +24 \kappa_{i,7})q^2_i \biggr), \\ (\kappa_{i,7})_0 =& \kappa_{i,7} - \frac{\alpha}{(4\pi)^2 \varepsilon} \biggl( \kappa_{i,7} \sum _j q_j^2 + \frac{1}{8}(7+ \kappa_{i,2} -16 \kappa_{i,3}\\ &{} +2\kappa_{i,4} + 4 \kappa _{i,5} ) q^2_i \biggr). \end{aligned}$$

However, we easily observe that, in whatever way we fix α, the expressions

$$\begin{aligned} & (\kappa_{i,2})_0 -4 (\kappa_{i,3})_0 -2(\kappa_{i,4})_0 \\ &\quad = \biggl( 1- \frac{\alpha}{(4\pi)^2 \varepsilon} \sum _j q_j^2 \biggr) ( \kappa_{i,2}-4 \kappa_{i,3} -2\kappa_{i,4}) \\ &\qquad{} - \frac{\alpha}{(4\pi)^2 \varepsilon} \sum_j q_j^2 + \frac {1}{(4\pi)^2 \varepsilon}\frac{q_i}{3}( 3+19 \kappa_{i,2} \\ &\qquad {} -128 \kappa _{i,3}-72\kappa_{i,4}), \end{aligned}$$

cannot be zero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burić, M., Latas, D., Nikolić, B. et al. The role of the Seiberg–Witten field redefinition in renormalization of noncommutative chiral electrodynamics. Eur. Phys. J. C 73, 2542 (2013). https://doi.org/10.1140/epjc/s10052-013-2542-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2542-3

Keywords

Navigation