Skip to main content
Log in

Study of models of the sine-Gordon type in flat and curved spacetime

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study a new family of models of the sine-Gordon type, starting from the sine-Gordon model, including the double sine-Gordon, the triple one, and so on. The models appears as deformations of the starting model, with the deformation controlled by two parameters, one very small, used to control a linear expansion on it, and the other, which specifies the particular model in the family of models. We investigate the presence of topological defects, showing how the solutions can be constructed explicitly from the topological defects of the sine-Gordon model itself. In particular, we delve into the double sine-Gordon model in a braneworld scenario with a single extra dimension of infinite extent, showing that a stable gravity scenario is admissible. Also, we briefly show that the deformation procedure can be used iteratively, leading to a diversity of possibilities to construct families of models of the sine-Gordon type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdan, 1982)

    MATH  Google Scholar 

  2. A. Vilenkin, E.P.S. Shellard, Cosmig Strings and Others Topological Defects (Cambridge Univ. Press, Cambridge, 1994)

    Google Scholar 

  3. N. Manton, P. Sutcliffe, Topological Solitons (Cambridge Univ. Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  4. D. Walgraef, Spatio-Temporal Pattern Formation (Springer, New York, 1997)

    Book  Google Scholar 

  5. A. Vanhaverbeke, A. Bischof, R. Allenspach, Phys. Rev. Lett. 101, 107202 (2008)

    Article  ADS  Google Scholar 

  6. G. Basar, G.V. Dunne, Phys. Rev. Lett. 100, 200404 (2008)

    Article  ADS  Google Scholar 

  7. A. Alonso-Izquierdo, M.A. Gonzalez Leon, J. Mateos Guilarte, Phys. Rev. Lett. 101, 131602 (2008)

    Article  ADS  Google Scholar 

  8. D. Bazeia, L. Losano, J.M.C. Malbouisson, Phys. Rev. D 66, 101701 (2002)

    Article  ADS  Google Scholar 

  9. C.A. Almeida, D. Bazeia, L. Losano, J.M.C. Malbouisson, Phys. Rev. D 69, 067702 (2004)

    Article  ADS  Google Scholar 

  10. V.I. Afonso, D. Bazeia, M.A. Gonzalez Leon, L. Losano, J. Mateos Guilarte, Nucl. Phys. B 810, 427 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. D. Bazeia, A. Das, L. Losano, M.J. Santos, Appl. Math. Lett. 23, 681 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. de Souza Dutra, Physica D 238, 798 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. W.T. Cruz, M.O. Tahim, C.A.S. Almeida, Europhys. Lett. 88, 41001 (2009)

    Article  ADS  Google Scholar 

  14. A.E.R. Chumbes, M.B. Hott, Phys. Rev. D 81, 045008 (2010)

    Article  ADS  Google Scholar 

  15. R.R. Landim, G. Alencar, M.O. Tahim, R.N. Costa Filho, J. High Energy Phys. 1108, 071 (2011)

    Article  ADS  Google Scholar 

  16. R. Landim, G. Alencar, M.O. Tahim, M.A.M. Gomes, R.N. Costa Filho, Europhys. Lett. 97, 20003 (2012)

    Article  ADS  Google Scholar 

  17. A.E. Bernardini, R. da Rocha, Adv. High Energy Phys. 2013, 304980 (2013)

    Google Scholar 

  18. D. Bazeia, L. Losano, R. Menezes, M.M. Sousa, Europhys. Lett. 87, 21001 (2009)

    Article  ADS  Google Scholar 

  19. G. Mussardo, V. Riva, G. Sotkov, Nucl. Phys. B 87, 548 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Mussardo, Nucl. Phys. B 779, 101 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A. Kundu, Phys. Rev. Lett. 99, 154101 (2007)

    Article  ADS  Google Scholar 

  22. L. Benfatto, C. Castellani, T. Giamarchi, Phys. Rev. Lett. 99, 207002 (2007)

    Article  ADS  Google Scholar 

  23. L.A. Ferreira, B. Piette, W.J. Zakrzewski, Phys. Rev. E 77, 036613 (2007)

    Article  ADS  Google Scholar 

  24. M. Cadoni, Y.-X. Liu, L.-D. Zhang, L.-D. Zhang, Y.-S. Duan, Phys. Rev. D 78, 0650025 (2008)

    Google Scholar 

  25. D. Bazeia, L. Losano, J.M.C. Malbouisson, R. Menezes, Physica D 237, 937 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. J.H. Al-Alawi, W.J. Zakrzewski, J. Phys. A 41, 315206 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. L.A. Ferreira, W.J. Zakrzewski, J. High Energy Phys. 1105, 130 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  28. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. W.D. Goldberger, M.B. Wise, Phys. Rev. Lett. 83, 4922 (1999)

    Article  ADS  Google Scholar 

  30. O. DeWolfe, D.Z. Freedman, S.S. Gubser, A. Karch, Phys. Rev. D 62, 046008 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Gremm, Phys. Lett. B 478, 434 (2000)

    Article  ADS  Google Scholar 

  32. R. Koley, S. Kar, Class. Quantum Gravity 22, 753 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Y. Brihaye, T. Delsate, Phys. Rev. D 86, 024029 (2012)

    Article  ADS  Google Scholar 

  34. E.B. Bogomol’nyi, Sov. J. Nucl. Phys. 24, 449 (1976)

    MathSciNet  Google Scholar 

  35. M.K. Prasad, C.M. Sommerfield, Phys. Rev. Lett. 35, 760 (1975)

    Article  ADS  Google Scholar 

  36. D. Bazeia, Phys. Rev. D 60, 067705 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Andrews, M. Lewandowski, M. Trodden, D. Wesley, Phys. Rev. D 82, 105006 (2010)

    Article  ADS  Google Scholar 

  38. D. Bazeia, J.D. Dantas, A.R. Gomes, L. Losano, R. Menezes, Phys. Rev. D 84, 045010 (2011)

    Article  ADS  Google Scholar 

  39. C. Adam, J.M. Queiruga, Phys. Rev. D 84, 105028 (2011)

    Article  ADS  Google Scholar 

  40. D. Bazeia, R. Menezes, Phys. Rev. D 84, 125018 (2011)

    Article  ADS  Google Scholar 

  41. C. Adam, J.M. Queiruga, Phys. Rev. D 85, 025019 (2012)

    Article  ADS  Google Scholar 

  42. D. Bazeia, J.D. Dantas, Phys. Rev. D 85, 067303 (2012)

    Article  ADS  Google Scholar 

  43. D. Bazeia, E. da Hora, R. Menezes, H.P. de Oliveira, C. dos Santos, Phys. Rev. D 81, 125016 (2010)

    Article  ADS  Google Scholar 

  44. D. Bazeia, A.S. Lobão Jr., R. Menezes, Phys. Rev. D 86, 125021 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C.A.G. Almeida, M. Pazetti and J.G.G.S. Ramos for comments and suggestions, and CAPES, CNPq and FAPESP for partial financial support. R. da Rocha thanks to CNPq grant 303027/2012-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roldão da Rocha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazeia, D., Losano, L., Menezes, R. et al. Study of models of the sine-Gordon type in flat and curved spacetime. Eur. Phys. J. C 73, 2499 (2013). https://doi.org/10.1140/epjc/s10052-013-2499-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2499-2

Keywords

Navigation