Skip to main content
Log in

Top- and bottom-mass effects in hadronic Higgs production at small transverse momenta through lo+nll

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The resummed transverse momentum distribution of the Higgs boson in gluon fusion through lo+nll for small transverse momenta is considered, where the Higgs is produced through a top- and bottom-quark loop. We study the mass effects with respect to the infinite top-mass approach. The top-mass effects are small and the heavy-top limit is valid to better than 4.5 % as long as the Higgs’ transverse momentum stays below 150 GeV. When the bottom loop is considered as well, the discrepancy reaches up to about 10 %. We conclude that bottom-mass effects cannot be included in a reasonable manner by a naive reweighting procedure in the heavy-top limit. We compare our results to an earlier, alternative approach based on POWHEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Throughout this paper we consider the interference terms of the top- and bottom-quark amplitudes as part of the bottom-quark contribution.

  2. The formalism in Ref. [34] is based on the all-order transverse momentum resummation method developed in Refs. [3745].

  3. Note that we omit the coefficient G introduced in Ref. [47] here and in what follows, since it enters at nlo+nnll which is beyond the accuracy needed in this paper. Furthermore, there is a subtle importance of different arguments of α s in the original formula which is not expressed in this formula, since it is not essential for the purpose of this paper.

  4. Note that only when fixing the resummation scheme the coefficients H, B, and C are unambiguously defined, since they are connected through so-called resummation-scheme transformations. Fixing H (or C) for a single process amounts to fixing the resummation scheme [48].

  5. Since the lo of the process ggH does not correspond to the lo of the p T distribution of the Higgs, we will refer to σ (0) as the Born factor in the following to avoid confusion.

  6. The N-moments of a function g(z) are defined as \(g_{N}=\int_{0}^{1}\, dz\,z^{N-1}\,g(z)\).

  7. See Ref. [34].

  8. We set μ F =μ R =Q res=m H throughout this section.

  9. We define the finite part of the virtual according to Eq. (38) of Ref. [49].

  10. Those ingredients are known for a long time [22, 56, 57].

  11. See Sect. 2.1.

  12. According to Ref. [61] in the MC@NLO approach [62] the shape of the curve including top- and bottom-mass dependence is much more similar to ours (red, solid curve in Fig. 8).

  13. Please recall that such a scale choice is not suitable for the top contribution in general. Consequently, the purpose of this comparison is just to provide qualitative information about the scale of the bottom contribution.

References

  1. CMS Collaboration, Phys. Lett. B 716, 30–61 (2012)

    Article  ADS  Google Scholar 

  2. ATLAS Collaboration, Phys. Lett. B 716, 1–29 (2012)

    Article  ADS  Google Scholar 

  3. S. Dittmaier et al., arXiv:1101.0593

  4. S. Dittmaier et al. arXiv:1201.3084

  5. R.V. Harlander, W.B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002)

    Article  ADS  Google Scholar 

  6. C. Anastasiou, K. Melnikov, Nucl. Phys. B 646, 220–256 (2002)

    Article  ADS  Google Scholar 

  7. V. Ravindran, J. Smith, W. van Neerven, Nucl. Phys. B 665, 325–366 (2003)

    Article  ADS  Google Scholar 

  8. S. Marzani, R.D. Ball, V. Del Duca, S. Forte, A. Vicini, Nucl. Phys. B 800, 127–145 (2008)

    Article  ADS  MATH  Google Scholar 

  9. R.V. Harlander, K.J. Ozeren, J. High Energy Phys. 0911, 088 (2009)

    Article  ADS  Google Scholar 

  10. R.V. Harlander, H. Mantler, S. Marzani, K.J. Ozeren, Eur. Phys. J. C 66, 359–372 (2010)

    Article  ADS  Google Scholar 

  11. A. Pak, M. Rogal, M. Steinhauser, Phys. Lett. B 679, 473–477 (2009)

    Article  ADS  Google Scholar 

  12. A. Pak, M. Rogal, M. Steinhauser, J. High Energy Phys. 1002, 025 (2010)

    Article  ADS  Google Scholar 

  13. R.V. Harlander, T. Neumann, K.J. Ozeren, M. Wiesemann, J. High Energy Phys. 1208, 139 (2012)

    Article  ADS  Google Scholar 

  14. V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt, D. Zeppenfeld, Nucl. Phys. B 616, 367–399 (2001)

    Article  ADS  Google Scholar 

  15. J. Alwall, Q. Li, F. Maltoni, Phys. Rev. D 85, 014031 (2012)

    Article  ADS  Google Scholar 

  16. E. Bagnaschi, G. Degrassi, P. Slavich, A. Vicini, J. High Energy Phys. 1202, 088 (2012)

    Article  ADS  Google Scholar 

  17. R. Harlander, Eur. Phys. J. C 33, S454–S456 (2004)

    Article  ADS  Google Scholar 

  18. D. de Florian, M. Grazzini, Phys. Lett. B 674, 291–294 (2009)

    Article  ADS  Google Scholar 

  19. C. Anastasiou, R. Boughezal, F. Petriello, J. High Energy Phys. 1006, 101 (2010)

    Article  ADS  Google Scholar 

  20. J. Baglio, A. Djouadi, J. High Energy Phys. 1010, 064 (2010)

    Article  ADS  Google Scholar 

  21. J. Baglio, A. Djouadi, J. High Energy Phys. 1103, 055 (2011)

    Article  ADS  Google Scholar 

  22. M. Spira, A. Djouadi, D. Graudenz, R. Zerwas, Nucl. Phys. B 453, 17–82 (1995)

    Article  ADS  Google Scholar 

  23. S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 0904, 002 (2009)

    Article  ADS  Google Scholar 

  24. S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 1006, 043 (2010)

    Article  ADS  Google Scholar 

  25. D. de Florian, M. Grazzini, Z. Kunszt, Phys. Rev. Lett. 82, 5209–5212 (1999)

    Article  ADS  Google Scholar 

  26. V. Ravindran, J. Smith, W. van Neerven, Nucl. Phys. B 634, 247–290 (2002)

    Article  ADS  Google Scholar 

  27. C.J. Glosser, C.R. Schmidt, J. High Energy Phys. 0212, 016 (2002)

    Article  ADS  Google Scholar 

  28. C. Anastasiou, K. Melnikov, F. Petriello, Phys. Rev. Lett. 93, 262002 (2004)

    Article  ADS  Google Scholar 

  29. S. Catani, M. Grazzini, Phys. Rev. Lett. 98, 222002 (2007)

    Article  ADS  Google Scholar 

  30. S. Catani, E. D’Emilio, L. Trentadue, Phys. Lett. B 211, 335–342 (1988)

    Article  ADS  Google Scholar 

  31. C.-P. Yuan, Phys. Lett. B 283, 395–402 (1992)

    Article  ADS  Google Scholar 

  32. R. Kauffman, Phys. Rev. D 45, 1512–1517 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  33. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, Phys. Lett. B 564, 65–72 (2003)

    Article  ADS  Google Scholar 

  34. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, Nucl. Phys. B 737, 73–120 (2006)

    Article  ADS  MATH  Google Scholar 

  35. D. Florian, G. Ferrera, M. Grazzini, D. Tommasini, J. High Energy Phys. 1111, 064 (2011)

    Article  Google Scholar 

  36. D. Florian, G. Ferrera, M. Grazzini, D. Tommasini, J. High Energy Phys. 1206, 132 (2012)

    Article  ADS  Google Scholar 

  37. Y. Dokshitzer, D. Dyakonov, S. Troyan, Phys. Rep. 58, 269–395 (1980)

    Article  ADS  Google Scholar 

  38. G. Parisi, R. Petronzio, Nucl. Phys. B 154, 427–440 (1979)

    Article  ADS  Google Scholar 

  39. G. Curci, M. Greco, Y. Srivastava, Nucl. Phys. B 159, 451–468 (1979)

    Article  ADS  Google Scholar 

  40. J.C. Collins, D.E. Soper, Nucl. Phys. B 193, 381–443 (1981)

    Article  ADS  Google Scholar 

  41. J.C. Collins, D.E. Soper, Nucl. Phys. B 197, 446–476 (1982)

    Article  ADS  Google Scholar 

  42. J. Kodaira, L. Trentadue, Phys. Lett. B 112, 66–70 (1982)

    Article  ADS  Google Scholar 

  43. C. Davies, W. Stirling, Nucl. Phys. B 244, 337–348 (1984)

    Article  ADS  Google Scholar 

  44. G. Altarelli, R. Ellis, M. Greco, G. Martinelli, Nucl. Phys. B 246, 12–44 (1984)

    Article  ADS  Google Scholar 

  45. J. Collins, D.E. Soper, G. Sterman, Nucl. Phys. B 250, 199–224 (1985)

    Article  ADS  Google Scholar 

  46. S. Catani, M. Grazzini, Eur. Phys. J. C 72, 2013 (2012)

    Article  ADS  Google Scholar 

  47. S. Catani, M. Grazzini, Nucl. Phys. B 845, 297–323 (2011)

    Article  ADS  MATH  Google Scholar 

  48. S. Catani, D. de Florian, M. Grazzini, Nucl. Phys. B 596, 299–312 (2001)

    Article  ADS  MATH  Google Scholar 

  49. D. de Florian, M. Grazzini, Nucl. Phys. B 616, 247–285 (2001)

    Article  ADS  Google Scholar 

  50. R.V. Harlander, P. Kant, J. High Energy Phys. 0512, 015 (2005)

    Article  ADS  Google Scholar 

  51. U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, J. High Energy Phys. 0701, 021 (2007)

    Article  ADS  Google Scholar 

  52. C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo, Z. Kunszt, J. High Energy Phys. 0701, 082 (2007)

    Article  ADS  Google Scholar 

  53. M. Mühlleitner, M. Spira, Nucl. Phys. B 790, 1–27 (2008)

    Article  ADS  Google Scholar 

  54. R. Bonciani, G. Degrassi, A. Vicini, J. High Energy Phys. 0711, 095 (2007)

    Article  ADS  Google Scholar 

  55. R.V. Harlander, F. Hofmann, H. Mantler, J. High Energy Phys. 1102, 055 (2011)

    Article  ADS  Google Scholar 

  56. H.M. Georgi, S.L. Glashow, M.E. Machacek, D.V. Nanopoulos, Phys. Rev. Lett. 40, 692–694 (1978)

    Article  ADS  Google Scholar 

  57. R. Ellis, I. Hinchliffe, M. Soldate, J. Van Der Bij, Nucl. Phys. B 297, 221–243 (1988)

    Article  ADS  Google Scholar 

  58. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189–285 (2009)

    Article  ADS  Google Scholar 

  59. T. Sjöstrand, S. Mrenna, P. Skands, J. High Energy Phys. 0605, 026 (2006)

    Article  ADS  Google Scholar 

  60. T. Sjöstrand, S. Mrenna, P. Skands, Comput. Phys. Commun. 178, 852–867 (2008)

    Article  ADS  MATH  Google Scholar 

  61. S. Frixione, private communication

  62. S. Frixione, B.R. Webber, J. High Energy Phys. 0206, 029 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Robert Harlander and Anurag Tripathi for fruitful discussion and enlightening comments, and the authors of Ref. [16] and Stefano Frixione for helpful communication. This work was supported by bmbf contracts 05H09PXE and 05H12PXE, and the Helmholtz Alliance “Physics at the Terascale”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Wiesemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantler, H., Wiesemann, M. Top- and bottom-mass effects in hadronic Higgs production at small transverse momenta through lo+nll . Eur. Phys. J. C 73, 2467 (2013). https://doi.org/10.1140/epjc/s10052-013-2467-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2467-x

Keywords

Navigation