Skip to main content
Log in

ϒ production in p(d)A collisions at RHIC and the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study the effect of nuclear matter in ϒ production in dAu collisions at RHIC and pPb collisions at the LHC. We find that the nuclear modification factor, \(R^{\varUpsilon}_{d\mathrm{Au}}\), measured at RHIC is not satisfactorily reproduced by the conventional effects used in the literature, namely the modification of the gluon distribution in bound nucleons and an—effective—survival probability for a bound state to escape the nucleus. In particular, we argue that this probability should be close to 1 as opposed to the J/ψ case. We note that, at backward rapidities, the unexpected suppression of \(R^{\varUpsilon}_{d\rm Au}\) observed by PHENIX hints at the presence of a gluon EMC effect, analogous to the quark EMC effect—but likely stronger. Further nuclear matter effects, such as saturation and fractional energy loss, are discussed, but none of them fit in a more global picture of quarkonium production. Predictions for ϒ(nS) for the forthcoming pPb run at 5 TeV at the LHC are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. As we argue later, such effect would be in contradiction with the satisfactory [30] description of low P T pp data by the Colour-Singlet Model [1, 2].

  2. As it was discussed later on (see e.g. [12]), the E772 experiment suffered from a P T dependent acceptance, especially in the backward region. For instance, the J/ψ suppression was subsequently shown to be less marked than initially thought. Yet, such a correction should equally apply for the 3 ϒ states [14].

  3. Note, however, that the central curves for the LO and NLO EPS09 fits are different. This difference is particularly large at low Q 2.

  4. Using, as initial proton PDF, the MSTW LO set [36].

  5. Such excess of the gluon density in large nuclei would be in line with the expected enhancement due to the Fermi motion and the steep large-x falloff of g(x).

  6. Along the same lines, it would not have any effect on DY pair production for instance.

  7. We note a discrepancy between the published value of Ref. [13] and that subsequently published in a review by members of E772 [42]. We prefer to use the latter since “[T]his difference was due to the use of earlier parameterisations of the P T dependence, derived by E605 for pCu collisions, rather than the new function based on p2H data” [43].

References

  1. J.P. Lansberg, Int. J. Mod. Phys. A 21, 3857 (2006). arXiv:hep-ph/0602091

    Article  ADS  Google Scholar 

  2. N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011). arXiv:1010.5827 [hep-ph]

    Article  ADS  Google Scholar 

  3. R. Rapp, D. Blaschke, P. Crochet, Prog. Part. Nucl. Phys. 65, 209 (2010). arXiv:0807.2470 [hep-ph]

    Article  ADS  Google Scholar 

  4. A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 109, 242301 (2012). arXiv:1211.4017 [nucl-ex]

    Article  ADS  Google Scholar 

  5. J.J. Aubert et al. (European Muon Collaboration), Phys. Lett. B 123, 123 (1983)

    Article  ADS  Google Scholar 

  6. F. Arleo, S. Peigne, T. Sami, Phys. Rev. D 83, 114036 (2011). arXiv:1006.0818 [hep-ph]

    Article  ADS  Google Scholar 

  7. R. Reed et al. (STAR Collaboration), Nucl. Phys. A 855, 440 (2011)

    Article  ADS  Google Scholar 

  8. B.I. Abelev et al. (STAR Collaboration), Phys. Rev. D 82, 012004 (2010). arXiv:1001.2745 [nucl-ex]

    Article  ADS  Google Scholar 

  9. E.G. Ferreiro, F. Fleuret, A. Rakotozafindrabe, Eur. Phys. J. C 61, 859 (2009). arXiv:0801.4949 [hep-ph]

    Article  ADS  Google Scholar 

  10. Z. Conesa del Valle et al., Nucl. Phys. B, Proc. Suppl. 214, 3 (2011). arXiv:1105.4545 [hep-ph]. See Sect. 3.1

    Article  ADS  Google Scholar 

  11. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 052302 (2011)

    Article  ADS  Google Scholar 

  12. M.J. Leitch, et al. (FNAL E866/NuSea Collaboration), Phys. Rev. Lett. 84, 3256 (2000). arXiv:nucl-ex/9909007

    Article  ADS  Google Scholar 

  13. D.M. Alde et al., Phys. Rev. Lett. 66, 2285 (1991)

    Article  ADS  Google Scholar 

  14. M. Leitch, private communication

  15. R.J. Glauber, Phys. Rev. 100, 242–248 (1955)

    Article  ADS  Google Scholar 

  16. V.N. Gribov, Sov. Phys. JETP 29, 483 (1969)

    ADS  Google Scholar 

  17. T. Gousset, H.J. Pirner, Phys. Lett. B 375, 349 (1996). arXiv:hep-ph/9601242

    Article  ADS  Google Scholar 

  18. K.J. Eskola, V.J. Kolhinen, C.A. Salgado, Eur. Phys. J. C 9, 61 (1999). arXiv:hep-ph/9807297

    ADS  Google Scholar 

  19. K.J. Eskola, H. Paukkunen, C.A. Salgado, J. High Energy Phys. 0807, 102 (2008). arXiv:0802.0139

    Article  ADS  Google Scholar 

  20. D. de Florian, R. Sassot, Phys. Rev. D 69, 074028 (2004). arXiv:hep-ph/0311227

    Article  ADS  Google Scholar 

  21. K.J. Eskola, H. Paukkunen, C.A. Salgado, J. High Energy Phys. 0904, 065 (2009). arXiv:0902.4154 [hep-ph]

    Article  ADS  Google Scholar 

  22. S.R. Klein, R. Vogt, Phys. Rev. Lett. 91, 142301 (2003). arXiv:nucl-th/0305046

    Article  ADS  Google Scholar 

  23. E.G. Ferreiro, F. Fleuret, J.P. Lansberg, A. Rakotozafindrabe, Phys. Lett. B 680, 50 (2009). arXiv:0809.4684 [hep-ph]

    Article  ADS  Google Scholar 

  24. E.G. Ferreiro, F. Fleuret, J.P. Lansberg, A. Rakotozafindrabe, Phys. Rev. C 81, 064911 (2010). arXiv:0912.4498 [hep-ph]

    Article  ADS  Google Scholar 

  25. E.G. Ferreiro, F. Fleuret, J.P. Lansberg, N. Matagne, A. Rakotozafindrabe, Few-Body Syst. 53, 27 (2012). arXiv:1201.5574 [hep-ph]

    Article  ADS  Google Scholar 

  26. S.J. Brodsky, J.P. Lansberg, Phys. Rev. D 81, 051502 (2010). arXiv:0908.0754 [hep-ph]

    Article  ADS  Google Scholar 

  27. J.M. Campbell, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 98, 252002 (2007). arXiv:hep-ph/0703113 [hep-ph]

    Article  ADS  Google Scholar 

  28. P. Artoisenet, J.M. Campbell, J.P. Lansberg, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008). arXiv:0806.3282 [hep-ph]

    Article  ADS  Google Scholar 

  29. R. Vogt, Phys. Rev. C 81, 044903 (2010). arXiv:1003.3497 [hep-ph]

    Article  ADS  Google Scholar 

  30. J.P. Lansberg, Nucl. Phys. A (2012). arXiv:1209.0331 [hep-ph]. doi:10.1016/j.nuclphysa.2012.12.051

    Google Scholar 

  31. P.R. Norton, Rep. Prog. Phys. 66, 1253 (2003)

    Article  ADS  Google Scholar 

  32. L.B. Weinstein, E. Piasetzky, D.W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Phys. Rev. Lett. 106, 052301 (2011). arXiv:1009.5666 [hep-ph]

    Article  ADS  Google Scholar 

  33. B.Z. Kopeliovich, J. Nemchik, I.K. Potashnikova, M.B. Johnson, I. Schmidt, Phys. Rev. C 72, 054606 (2005). arXiv:hep-ph/0501260

    Article  ADS  Google Scholar 

  34. H. Merabet, J.F. Mathiot, J. Dolejsi, H.J. Pirner, Phys. Lett. B 307, 177 (1993)

    Article  ADS  Google Scholar 

  35. J. Bartke, Introduction to Relativistic Heavy Ion Physics (World Scientific, Singapore, 2009)

    Google Scholar 

  36. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

  37. J.L. Albacete, N. Armesto, J.G. Milhano, C.A. Salgado, Phys. Rev. D 80, 034031 (2009). arXiv:0902.1112 [hep-ph]

    Article  ADS  Google Scholar 

  38. J.L. Albacete, N. Armesto, J.G. Milhano, P. Quiroga-Arias, C.A. Salgado, Eur. Phys. J. C 71, 1705 (2011). arXiv:1012.4408 [hep-ph]

    Article  ADS  Google Scholar 

  39. M. Hirai, S. Kumano, T.-H. Nagai, Phys. Rev. C 70, 044905 (2004). hep-ph/0404093

    Article  ADS  Google Scholar 

  40. S.J. Brodsky, P. Hoyer, Phys. Lett. B 298, 165 (1993). arXiv:hep-ph/9210262

    Article  ADS  Google Scholar 

  41. F. Arleo, S. Peigne, Phys. Rev. Lett. 109, 122301 (2012). arXiv:1204.4609 [hep-ph]

    Article  ADS  Google Scholar 

  42. P.L. McGaughey, J.M. Moss, J.C. Peng, Annu. Rev. Nucl. Part. Sci. 49, 217 (1999). arXiv:hep-ph/9905409

    Article  ADS  Google Scholar 

  43. P.L. McGaughey, J.M. Moss, J.C. Peng, unpublished comment

  44. K. Wang, Y.-Q. Ma, K.-T. Chao, Phys. Rev. D 85, 114003 (2012). arXiv:1202.6012 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Albacete, F.Arleo, N. Armesto, R. Arnaldi, S.J. Brodsky, B.Z. Kopeliovich, M. Leitch, S. Peigné and C. Salgado, for useful discussions. This work is supported in part by Ministerios de Educacion y Ciencia of Spain and IN2P3 of France (AIC-D-2011-0740) and by the ReteQuarkonii Networking of the EU I3 Hadron Physics 2 program. N.M. thanks the F.R.S.-FNRS (Belgium) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Lansberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreiro, E.G., Fleuret, F., Lansberg, J.P. et al. ϒ production in p(d)A collisions at RHIC and the LHC. Eur. Phys. J. C 73, 2427 (2013). https://doi.org/10.1140/epjc/s10052-013-2427-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2427-5

Keywords

Navigation