Skip to main content
Log in

The trouble with asymptotically safe inflation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this paper we investigate the perturbation theory of asymptotically safe inflation and we find that all modes of gravitational waves perturbation become ghosts in order to achieve a large enough number of e-folds. Formally we can calculate the power spectrum of gravitational waves perturbation, but we find that it is negative. It indicates that there is serious trouble with asymptotically safe inflation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. S. Weinberg, in Understanding the Fundamental Constituents of Matter, ed. by A. Zichichi (Plenum, New York, 1977)

    Google Scholar 

  2. S. Weinberg, in General Relativity, an Einstein Centenary Survey, ed. by S. Hawking, W. Israel (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  3. M. Niedermaier, M. Reuter, The asymptotic safety scenario in quantum gravity. Living Rev. Relativ. 9, 5 (2006)

    ADS  Google Scholar 

  4. A. Codello, R. Percacci, C. Rahmede, Ultraviolet properties of f(R)-gravity. Int. J. Mod. Phys. A 23, 143 (2008). arXiv:0705.1769 [hep-th]

    Article  ADS  Google Scholar 

  5. A. Codello, R. Percacci, C. Rahmede, Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation. Ann. Phys. 324, 414 (2009). arXiv:0805.2909 [hep-th]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. D. Benedetti, P.F. Machado, F. Saueressig, Asymptotic safety in higher-derivative gravity. Mod. Phys. Lett. A 24, 2233 (2009). arXiv:0901.2984 [hep-th]

    Article  ADS  MATH  Google Scholar 

  7. D. Benedetti, P.F. Machado, F. Saueressig, Taming perturbative divergences in asymptotically safe gravity. Nucl. Phys. B 824, 168 (2010). arXiv:0902.4630 [hep-th]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. Bonanno, M. Reuter, Cosmology of the Planck era from a renormalization group for quantum gravity. Phys. Rev. D 65, 043508 (2002). arXiv:hep-th/0106133

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Reuter, F. Saueressig, From big bang to asymptotic de Sitter: complete cosmologies in a quantum gravity framework. J. Cosmol. Astropart. Phys. 0509, 012 (2005). arXiv:hep-th/0507167

    Article  MathSciNet  ADS  Google Scholar 

  10. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  11. S. Weinberg, Asymptotically safe inflation. Phys. Rev. D 81, 083535 (2010). arXiv:0911.3165 [hep-th]

    Article  ADS  Google Scholar 

  12. S.-H.H. Tye, J. Xu, Comment on asymptotically safe inflation. Phys. Rev. D 82, 127302 (2010). arXiv:1008.4787 [hep-th]

    Article  ADS  Google Scholar 

  13. M. Hindmarsh, I.D. Saltas, f(R) Gravity from the renormalisation group. Phys. Rev. D 86, 064029 (2012). arXiv:1203.3957 [gr-qc]

    Article  ADS  Google Scholar 

  14. M.R. Niedermaier, Gravitational fixed points from perturbation theory. Phys. Rev. Lett. 103, 101303 (2009)

    Article  ADS  Google Scholar 

  15. T. Clunan, M. Sasaki, Tensor ghosts in the inflationary cosmology. Class. Quantum Gravity 27, 165014 (2010). arXiv:0907.3868 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Deruelle, M. Sasaki, Y. Sendouda, A. Youssef, Lorentz-violating vs ghost gravitons: the example of Weyl gravity. J. High Energy Phys. 1209, 009 (2012). arXiv:1202.3131 [gr-qc]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

QGH would like to thank Henry Tye for helpful discussions. This work is supported by the project of Knowledge Innovation Program of Chinese Academy of Science and a grant from NSFC (grant No. 10975167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Guo Huang.

Appendix

Appendix

We start with a general scalar perturbed metric about the flat FRW background as follows:

(A.1)

The gauge transformations are

(A.2)
(A.3)
(A.4)
(A.5)

In this paper we will work on the longitudinal gauge which corresponds to the gauge choice \(\hat{\beta}=0\) and \(\hat{\gamma}=0\) by setting the \(\delta t=a(\beta+a\dot{\gamma})\) and δx=γ. In this gauge, the line element becomes

(A.6)

where we omitted the hat for perturbed quantities and τ is conformal time which is related to time t by

(A.7)

The equations of motion for α and ζ are governed by the action in Eq. (2.1). In the Longitudinal gauge, after a lengthy but straightforward calculation, we obtain the action for perturbations as follows:

(A.8)

where

(A.9)
(A.10)

and

(A.11)

From the above action, the equations of motion for α and ζ become

(A.12)

and

(A.13)

Similar to Sect. 3, ignoring the terms with ϵ and κ, the action for α and ζ becomes

(A.14)

We see that ghosts also emerge in the above action.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, C., Huang, QG. The trouble with asymptotically safe inflation. Eur. Phys. J. C 73, 2401 (2013). https://doi.org/10.1140/epjc/s10052-013-2401-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2401-2

Keywords

Navigation