Skip to main content
Log in

Local Lorentz transformation and exact spherically symmetric vacuum solutions in f(T) gravity theories

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this paper a non-diagonal, spherically symmetric, tetrad field that contains an arbitrary function, S(r), which corresponds to a local Lorentz transformation, is applied to the field equations of f(T) gravity theories. Analytic vacuum solutions with integration constants are derived. These constants are studied by calculating the total conserved charge associated with each solution. The study shows that the obtained solutions represent the Schwarzschild–Ads spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Spacetime indices μ,ν,… and SO(3,1) indices a,b,… run from 0 to 3. Time and space indices are indicated by μ=0,i, and a=(0),(i).

  2. (Λ i j ) g is the general local Lorentz transformation matrix to a general three-dimensional rotation R parametrized by its three Euler angles θ, ϕ and ψ such that we can write

    where the R x , R y , R z are the rotation matrices about the Cartesian coordinate axis with angles ϕ, ϑ, ψ, respectively. These well-known matrices are given by

    In our study we consider the following values for the three Euler angles:

    $$\phi=\delta(r), \qquad\vartheta=\theta+\frac{\pi}{2}, \qquad \psi=\phi, $$

    where δ(r) is taken to be a general function of r, and when \(\delta(r)=\frac{\pi}{2}\), for spherical symmetric case, we get the local Lorentz transformation (Λ i j ) presented in Eq. (9).

  3. The asymptote behavior of Eq. (17), after using Eq. (18), is like \(S(r) \sim \mathrm{constant}+O (\frac{1}{r^{2}} )\) which has no effect on the calculations of the physical quantities, i.e., the conserved quantities related to output II [34, 41].

  4. Equations (11)–(13) and Eq. (20) are four differential equations in four unknown functions f(T)=f(r), A(r), B(r) and S(r), but those equations are not in consistence with each other. This inconsistency mainly comes from the appearance of f T and f TT terms. If these terms are vanishing one returns to the linear case of f(T) and can find exact solution to these system, otherwise it will not be easy. Therefore, we put some constraint on the unknown functions to be able to find some especial solutions.

  5. The calculations were checked using Maple software 15.

References

  1. R. Aldrovandi, J.G. Pereira, An Introduction to Teleparallel Gravity. Instituto de Fisica Teorica, UNSEP, Sao Paulo (http://www.ift.unesp.br/gcg/tele.pdf)

  2. R. Weitzenböck, Invarianten Theorie (Noordhoff, Groningen, 1923)

    Google Scholar 

  3. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    ADS  Google Scholar 

  5. G.R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009)

    Article  ADS  Google Scholar 

  6. P. Wu, H. Yu, Phys. Lett. B 693, 415 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  7. R. Myrzakulov, Eur. Phys. J. C 71, 1752 (2011)

    Article  ADS  Google Scholar 

  8. P.Y. Tsyba, I.I. Kulnazarov, K.K. Yerzhanov, R. Myrzakulov, Int. J. Theor. Phys. 50, 1876 (2011)

    Article  Google Scholar 

  9. E.V. Linder, Phys. Rev. D 81, 127301 (2010)

    Article  ADS  Google Scholar 

  10. P. Wu, H. Yu, Eur. Phys. J. C 71, 1552 (2011)

    Article  ADS  Google Scholar 

  11. R. Myrzakulov, Gen. Relativ. Gravit. 44(12), 3059–3080 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. P. Wu, H. Yu, Phys. Lett. B 692, 176 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  13. K. Karami, A. Abdolmaleki, J. Phys. Conf. Ser. 375, 032009 (2012)

    Article  ADS  Google Scholar 

  14. S.-H. Chen, J.B. Dent, S. Dutta, E.N. Saridakis, Phys. Rev. D 83, 023508 (2011)

    Article  ADS  Google Scholar 

  15. P. Wu, H. Yu, Phys. Lett. B 692, 176 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl., (1928) 217 (1930) 401

  17. M.I. Mikhail, M.I. Wanas, Proc. R. Soc. Lond. A 356, 471 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  18. C. Møller, Mat. Fys. Medd. Dan. Vid. Selsk. 39, 13 (1978)

    Google Scholar 

  19. K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  20. K. Hayashi, T. Shirafuji, Phys. Rev. D 24, 3312 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  21. C. Pellegrini, J. Plebanski, Mat. Fys. Scr. Dan. Vid. Selsk. 2, 3 (1963)

    MathSciNet  Google Scholar 

  22. R. Ferraro, F. Fiorini, Phys. Rev. D 75, 084031 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  23. R. Ferraro, F. Fiorini, Phys. Rev. D 78, 124019 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  24. R. Ferraro, F. Fiorini, Phys. Rev. D 84, 083518 (2011)

    Article  ADS  Google Scholar 

  25. C.G. Böhmer, A. Mussa, N. Tamanini, Class. Quantum Gravity 28, 245020 (2011)

    Article  ADS  Google Scholar 

  26. C. Deliduman, B. Yapiskan, arXiv:1103.2225v3 [gr-qc]

  27. B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 064035 (2011)

    Article  ADS  Google Scholar 

  28. T.P. Sotiriou, B. Li, J.D. Barrow, Phys. Rev. D 83, 104030 (2011)

    Article  ADS  Google Scholar 

  29. B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 104017 (2011)

    Article  ADS  Google Scholar 

  30. G.G.L. Nashed, Phys. Rev. D 66, 064015 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  31. M.H. Daouda, M.E. Rodrigues, M.J.S. Houndjo, Eur. Phys. J. C 71, 1817 (2011)

    Article  ADS  Google Scholar 

  32. N. Tamanini, C.G. Böhmer, Phys. Rev. D 86, 044009 (2012)

    Article  ADS  Google Scholar 

  33. G.G.L. Nashed, Chin. Phys. Lett. 29, 050402 (2012)

    Article  Google Scholar 

  34. F.I. Mikhail, M.I. Wanas, A. Hindawi, E.I. Lashin, Int. J. Theor. Phys. 32, 1627 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. J.W. Maluf, F.F. Faria, S.C. Ulhoa, Class. Quantum Gravity 24, 2743 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. T. Shirafuji, G.G.L. Nashed, K. Hayashi, Prog. Theor. Phys. 95, 665 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  37. J.W. Maluf, J.F. da Rocha-neto, T.M.L. Toribio, K.H. Castello-Branco, Phys. Rev. D 65, 124001 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  38. Y. Obukhov, G.F. Rubilar, Phys. Rev. D 74, 064002 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  39. W. Kopzyński, Ann. Phys. 203, 308 (1990)

    Article  ADS  Google Scholar 

  40. A. Komar, Phys. Rev. 127, 1411 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. T.G. Lucas, Y.N. Obukhov, J.G. Pereira, Phys. Rev. D 80, 064043 (2009)

    Article  ADS  Google Scholar 

  42. M. Hamani Daouda, M.E. Rodrigues, M.J.S. Houndjo, Phys. Lett. B 715, 241 (2012)

    Article  ADS  Google Scholar 

  43. R. Arnowitt, S. Deser, C.W. Misner, Gravitation: an Introduction to Current Research, ed. by L. Witten (Wiley, New York, 1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamal G. L. Nashed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nashed, G.G.L. Local Lorentz transformation and exact spherically symmetric vacuum solutions in f(T) gravity theories. Eur. Phys. J. C 73, 2394 (2013). https://doi.org/10.1140/epjc/s10052-013-2394-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2394-x

Keywords

Navigation