Skip to main content
Log in

Searching the sbottom in the four lepton channel at the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Direct searches at the Large Hadron Collider (LHC) have pushed the lower limits on the masses of the gluinos (\(\tilde{g}\)) and the squarks of the first two generations (\(\tilde{q}\)) to the TeV range. On the other hand, the limits are rather weak for the third generation squarks and masses around a few hundred GeV are still allowed. A comparatively light third generation of squarks is also consistent with the lightest Higgs boson with mass ∼125 GeV. In view of this, we consider the direct production of a pair of sbottom quarks (\(\tilde{b}_{1}\)) at the LHC and study their collider signatures. We focus on the scenario where the \(\tilde{b}_{1}\) is not the next-to-lightest supersymmetric particle (NLSP) and hence can also decay to channels other than the commonly considered decay mode to a bottom quark and the lightest neutralino (\(\tilde{\chi}^{0}_{1}\)). For example, we consider the decay modes containing a bottom quark and the second neutralino (\(\tilde{b}_{1} \to b \tilde{\chi}^{0}_{2}\)) and/or a top quark and the lightest chargino (\(\tilde{b}_{1} \to t \tilde{\chi}^{\pm}_{1}\)) following the leptonic decays of the neutralino, chargino and the top quark giving rise to a four leptons () + two b-jets + missing transverse momentum () final state. We show that a sbottom mass ≲550 GeV can be probed in this channel at the 14 TeV LHC energy with integrated luminosity ≲100 fb−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Chatrchyan et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  2. G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  3. Search for new phenomena using large jet multiplicities and missing transverse momentum with atlas in 5.8 fb−1 of \(\sqrt{s}=8~\mathrm{TeV}\) proton–proton collisions. Tech. Rep. ATLAS-CONF-2012-103, CERN, Geneva, Aug. 2012

  4. Search for squarks and gluinos with the atlas detector using final states with jets and missing transverse momentum and 5.8 fb−1 of \(\sqrt{s}=8~\mathrm{TeV}\) proton–proton collision data. Tech. Rep. ATLAS-CONF-2012-109, CERN, Geneva, Aug. 2012

  5. Search for supersymmetry with the razor variables at CMS

  6. H. Baer, V. Barger, A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches. Phys. Rev. D 85, 075010 (2012). arXiv:1112.3017 [hep-ph]

    Article  ADS  Google Scholar 

  7. S. Akula, B. Altunkaynak, D. Feldman, P. Nath, G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results, and dark matter. Phys. Rev. D 85, 075001 (2012). arXiv:1112.3645 [hep-ph]

    Article  ADS  Google Scholar 

  8. J.L. Feng, K.T. Matchev, D. Sanford, Focus point supersymmetry redux. Phys. Rev. D 85, 075007 (2012). arXiv:1112.3021 [hep-ph]

    Article  ADS  Google Scholar 

  9. S. Heinemeyer, O. Stal, G. Weiglein, Interpreting the LHC Higgs search results in the MSSM. Phys. Lett. B 710, 201–206 (2012). arXiv:1112.3026 [hep-ph]

    Article  ADS  Google Scholar 

  10. O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis et al., Higgs and supersymmetry. Eur. Phys. J. C 72, 2020 (2012). arXiv:1112.3564 [hep-ph]

    Article  ADS  Google Scholar 

  11. P. Draper, P. Meade, M. Reece, D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking. Phys. Rev. D 85, 095007 (2012). arXiv:1112.3068 [hep-ph]

    Article  ADS  Google Scholar 

  12. J. Cao, Z. Heng, D. Li, J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM. Phys. Lett. B 710, 665–670 (2012). arXiv:1112.4391 [hep-ph]

    Article  ADS  Google Scholar 

  13. L.J. Hall, D. Pinner, J.T. Ruderman, A natural SUSY Higgs near 126 GeV. J. High Energy Phys. 1204, 131 (2012). arXiv:1112.2703 [hep-ph]

    Article  ADS  Google Scholar 

  14. J. Ellis, K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM. Eur. Phys. J. C 72, 2005 (2012). arXiv:1202.3262 [hep-ph]

    Article  ADS  Google Scholar 

  15. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang, J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM. J. High Energy Phys. 1203, 086 (2012). arXiv:1202.5821 [hep-ph]

    Article  ADS  Google Scholar 

  16. C.-F. Chang, K. Cheung, Y.-C. Lin, T.-C. Yuan, Mimicking the Standard Model Higgs boson in UMSSM. J. High Energy Phys. 1206, 128 (2012). arXiv:1202.0054 [hep-ph]

    Article  ADS  Google Scholar 

  17. H. Baer, V. Barger, A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar. J. High Energy Phys. 1205, 091 (2012). arXiv:1202.4038 [hep-ph]

    Article  ADS  Google Scholar 

  18. D. Ghosh, M. Guchait, D. Sengupta, Higgs signal in chargino-neutralino production at the LHC. Eur. Phys. J. C 72, 2141 (2012). arXiv:1202.4937 [hep-ph]

    Article  ADS  Google Scholar 

  19. L. Maiani, A. Polosa, V. Riquer, Probing minimal supersymmetry at the LHC with the Higgs boson masses. New J. Phys. 14, 073029 (2012). arXiv:1202.5998 [hep-ph]

    Article  ADS  Google Scholar 

  20. T. Cheng, J. Li, T. Li, D.V. Nanopoulos, C. Tong, Electroweak supersymmetry around the electroweak scale. arXiv:1202.6088 [hep-ph]

  21. F. Jegerlehner, Implications of low and high energy measurements on SUSY models. Frascati Phys. Ser. 54, 42–51 (2012). arXiv:1203.0806 [hep-ph]

    Google Scholar 

  22. A. Choudhury, A. Datta, Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals. J. High Energy Phys. 1206, 006 (2012). arXiv:1203.4106 [hep-ph]

    Article  ADS  Google Scholar 

  23. P. Byakti, D. Ghosh, Magic messengers in gauge mediation and signal for 125 GeV boosted Higgs boson. arXiv:1204.0415 [hep-ph]

  24. F. Brummer, S. Kraml, S. Kulkarni, Anatomy of maximal stop mixing in the MSSM. J. High Energy Phys. 1208, 089 (2012). arXiv:1204.5977 [hep-ph]

    Article  ADS  Google Scholar 

  25. C. Balazs, A. Buckley, D. Carter, B. Farmer, M. White, Should we still believe in constrained supersymmetry? arXiv:1205.1568 [hep-ph]

  26. M. Badziak, Yukawa unification in SUSY SO(10) in light of the LHC Higgs data. Mod. Phys. Lett. A 27, 1230020 (2012). arXiv:1205.6232 [hep-ph]

    Article  ADS  Google Scholar 

  27. J.L. Feng, D. Sanford, A natural 125 GeV Higgs boson in the MSSM from focus point supersymmetry with a-terms. Phys. Rev. D 86, 055015 (2012). arXiv:1205.2372 [hep-ph]

    Article  ADS  Google Scholar 

  28. D. Ghosh, M. Guchait, S. Raychaudhuri, D. Sengupta, How constrained is the cMSSM? Phys. Rev. D 86, 055007 (2012). arXiv:1205.2283 [hep-ph]

    Article  ADS  Google Scholar 

  29. E. Dudas, Y. Mambrini, A. Mustafayev, K.A. Olive, Relating the CMSSM and SUGRA models with GUT scale and super-GUT scale supersymmetry breaking. Eur. Phys. J. C 72, 2138 (2012). arXiv:1205.5988 [hep-ph]

    Article  ADS  Google Scholar 

  30. A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski et al., The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs. Phys. Rev. D 86, 075010 (2012). arXiv:1206.0264 [hep-ph]

    Article  ADS  Google Scholar 

  31. P. Athron, S. King, D. Miller, S. Moretti, R. Nevzorov, Constrained exceptional supersymmetric Standard Model with a Higgs near 125 GeV. Phys. Rev. D 86, 095003 (2012). arXiv:1206.5028 [hep-ph]

    Article  ADS  Google Scholar 

  32. R.M. Chatterjee, M. Guchait, D. Sengupta, Probing supersymmetry using event shape variables at 8 TeV LHC. Phys. Rev. D 86, 075014 (2012). arXiv:1206.5770 [hep-ph]

    Article  ADS  Google Scholar 

  33. M.W. Cahill-Rowley, J.L. Hewett, A. Ismail, T.G. Rizzo, The Higgs sector and fine-tuning in the pMSSM. Phys. Rev. D 86, 075015 (2012). arXiv:1206.5800 [hep-ph]

    Article  ADS  Google Scholar 

  34. S. Akula, P. Nath, G. Peim, Implications of the Higgs boson discovery for mSUGRA. Phys. Lett. B 717, 188–192 (2012). arXiv:1207.1839 [hep-ph]

    Article  ADS  Google Scholar 

  35. J. Cao, Z. Heng, J.M. Yang, J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data. J. High Energy Phys. 1210, 079 (2012). arXiv:1207.3698 [hep-ph]

    Article  ADS  Google Scholar 

  36. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery. J. High Energy Phys. 1209, 107 (2012). arXiv:1207.1348 [hep-ph]

    Article  ADS  Google Scholar 

  37. P. Nath, SUGRA Grand Unification, LHC and Dark Matter. arXiv:1207.5501 [hep-ph]

  38. N. Desai, B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data. J. High Energy Phys. 1205, 057 (2012). arXiv:1111.2830 [hep-ph]

    Article  ADS  Google Scholar 

  39. B. He, T. Li, Q. Shafi, Impact of LHC searches on NLSP top squark and gluino mass. J. High Energy Phys. 1205, 148 (2012). arXiv:1112.4461 [hep-ph]

    Article  ADS  Google Scholar 

  40. M. Drees, M. Hanussek, J.S. Kim, Light stop searches at the LHC with monojet events. Phys. Rev. D 86, 035024 (2012). arXiv:1201.5714 [hep-ph]

    Article  ADS  Google Scholar 

  41. J. Berger, J. Hubisz, M. Perelstein, A fermionic top partner: naturalness and the LHC. J. High Energy Phys. 1207, 016 (2012). arXiv:1205.0013 [hep-ph]

    Article  ADS  Google Scholar 

  42. T. Plehn, M. Spannowsky, M. Takeuchi, Stop searches in 2012. J. High Energy Phys. 1208, 091 (2012). arXiv:1205.2696 [hep-ph]

    Article  ADS  Google Scholar 

  43. Z. Han, A. Katz, D. Krohn, M. Reece, (Light) stop signs. J. High Energy Phys. 1208, 083 (2012). arXiv:1205.5808 [hep-ph]

    Article  ADS  Google Scholar 

  44. V. Barger, P. Huang, M. Ishida, W.-Y. Keung, Scalar-top masses from SUSY loops with 125 GeV mh and precise Mw. arXiv:1206.1777 [hep-ph]

  45. A. Choudhury, A. Datta, New limits on top squark NLSP from LHC 4.7 fb−1 data. Mod. Phys. Lett. A 27, 1250188 (2012). arXiv:1207.1846 [hep-ph]

    Article  ADS  Google Scholar 

  46. J. Cao, C. Han, L. Wu, J.M. Yang, Y. Zhang, Probing natural SUSY from stop pair production at the LHC. arXiv:1206.3865 [hep-ph]

  47. K. Ghosh, K. Huitu, J. Laamanen, L. Leinonen, K. Huitu et al., Top jets as a probe of degenerate stop-NLSP LSP scenario in the framework of cMSSM. arXiv:1207.2429 [hep-ph]

  48. B. Dutta, T. Kamon, N. Kolev, K. Sinha, K. Wang, Searching for top squarks at the LHC in fully hadronic final state. Phys. Rev. D 86, 075004 (2012). arXiv:1207.1873 [hep-ph]

    Article  ADS  Google Scholar 

  49. C.-Y. Chen, A. Freitas, T. Han, K.S. Lee, New physics from the top at the LHC. arXiv:1207.4794 [hep-ph]

  50. A. Bartl, H. Eberl, S. Kraml, W. Majerotto, W. Porod et al., Search of stop, sbottom, tau sneutrino, and stau at an e+e linear collider with S∗∗(1/2)=0.5 TeV–2 TeV. Z. Phys. C 76, 549–560 (1997). arXiv:hep-ph/9701336 [hep-ph]

    Article  Google Scholar 

  51. J. Hisano, K. Kawagoe, M.M. Nojiri, A detailed study of the gluino decay into the third generation squarks at the CERN LHC. Phys. Rev. D 68, 035007 (2003). arXiv:hep-ph/0304214 [hep-ph]

    Article  ADS  Google Scholar 

  52. M. Drees, Y.G. Kim, M.M. Nojiri, D. Toya, K. Hasuko et al., Scrutinizing LSP dark matter at the CERN LHC. Phys. Rev. D 63, 035008 (2001). arXiv:hep-ph/0007202 [hep-ph]

    Article  ADS  Google Scholar 

  53. J. Hisano, K. Kawagoe, R. Kitano, M.M. Nojiri, Scenery from the top: study of the third generation squarks at CERN LHC. Phys. Rev. D 66, 115004 (2002). arXiv:hep-ph/0204078 [hep-ph]

    Article  ADS  Google Scholar 

  54. A. Alves, O. Eboli, Unravelling the sbottom spin at the CERN LHC. Phys. Rev. D 75, 115013 (2007). arXiv:0704.0254 [hep-ph]

    Article  ADS  Google Scholar 

  55. A. Belyaev, T. Lastovicka, A. Nomerotski, G. Lastovicka-Medin, Discovering bottom squark co-annihilation at ILC. Phys. Rev. D 81, 035011 (2010). arXiv:0912.2411 [hep-ph]

    Article  ADS  Google Scholar 

  56. M. Adeel Ajaib, T. Li, Q. Shafi, Searching for NLSP sbottom at the LHC. Phys. Lett. B 701, 255–259 (2011). arXiv:1104.0251 [hep-ph]

    Article  ADS  Google Scholar 

  57. H.M. Lee, V. Sanz, M. Trott, Hitting sbottom in natural SUSY. J. High Energy Phys. 1205, 139 (2012). arXiv:1204.0802 [hep-ph]

    Article  ADS  Google Scholar 

  58. E. Alvarez, Y. Bai, Reach the bottom line of the sbottom search. J. High Energy Phys. 1208, 003 (2012). arXiv:1204.5182 [hep-ph]

    Article  ADS  Google Scholar 

  59. M.A. Ajaib, I. Gogoladze, Q. Shafi, Higgs boson production and decay: effects from light third generation and vectorlike matter. arXiv:1207.7068 [hep-ph]

  60. CMS Collaboration, CMS-PAS-SUS-11-022, Search for supersymmetry in final states with missing transverse momentum and 0, 1, 2, or ≥3 b jets with CMS

  61. S. Chatrchyan et al. (CMS Collaboration), Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at \(\sqrt{s} = 7~\mathrm{TeV}\). J. High Energy Phys. 1208, 110 (2012). arXiv:1205.3933 [hep-ex]

    ADS  Google Scholar 

  62. G. Aad et al. (ATLAS Collaboration), Search for top and bottom squarks from gluino pair production in final states with missing transverse energy and at least three b-jets with the ATLAS detector. arXiv:1207.4686 [hep-ex]

  63. S.P. Martin, A Supersymmetry primer. arXiv:hep-ph/9709356 [hep-ph]

  64. A. Djouadi et al. (MSSM Working Group Collaboration), The minimal supersymmetric Standard Model: group summary report. arXiv:hep-ph/9901246 [hep-ph]

  65. J. Beringer et al. (Particle Data Group Collaboration), Review of particle physics. Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  66. M. Carena, S. Gori, N.R. Shah, C.E. Wagner, L.-T. Wang, Light stau phenomenology and the Higgs γγ rate. J. High Energy Phys. 1207, 175 (2012). arXiv:1205.5842 [hep-ph]

    Article  ADS  Google Scholar 

  67. W. Beenakker, R. Hopker, M. Spira, PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD. arXiv:hep-ph/9611232 [hep-ph]

  68. A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426–455 (2007). arXiv:hep-ph/0211331 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  69. T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 0605, 026 (2006). arXiv:hep-ph/0603175 [hep-ph]

    Article  ADS  Google Scholar 

  70. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097 [hep-ph]

    Article  ADS  Google Scholar 

  71. M. Cacciari, G.P. Salam, G. Soyez, The anti-k(t) jet clustering algorithm. J. High Energy Phys. 0804, 063 (2008). arXiv:0802.1189 [hep-ph]

    Article  ADS  Google Scholar 

  72. H. Lai et al. (CTEQ Collaboration), Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions. Eur. Phys. J. C 12, 375–392 (2000). arXiv:hep-ph/9903282 [hep-ph]

    Article  ADS  Google Scholar 

  73. D. Bourilkov, R.C. Group, M.R. Whalley, LHAPDF: PDF use from the Tevatron to the LHC. arXiv:hep-ph/0605240 [hep-ph]

  74. F. Kling, T. Plehn, M. Takeuchi, Tagging single tops. arXiv:1207.4787 [hep-ph]

  75. CMS Collaboration, CMS-PAS-BTV-11-001, performance of the b-jet identification in CMS

Download references

Acknowledgements

D.G. would like to acknowledge the hospitality of Prof. Palash B. Pal and the Theory Group of Saha Institute of Nuclear Physics where this work was finalized. D.G. and D.S. also thank Monoranjan Guchait for useful discussions and encouragement. D.S. acknowledges Christophe Grojean and the CERN theory division for the hospitality where part of the work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipan Sengupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, D., Sengupta, D. Searching the sbottom in the four lepton channel at the LHC. Eur. Phys. J. C 73, 2342 (2013). https://doi.org/10.1140/epjc/s10052-013-2342-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2342-9

Keywords

Navigation