Skip to main content
Log in

Amplitudes and observables in pp elastic scattering at \(\sqrt{s}=7\ \mbox{TeV}\)

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A precise analysis of the pp elastic scattering data at 7 TeV in terms of its amplitudes is performed as an extension of previous studies for lower energies. Slopes B R and B I of the real and imaginary amplitudes are independent quantities, and a proper expression for the Coulomb phase is used. The real and imaginary amplitudes are fully disentangled, consistently with forward dispersion relations for amplitudes and for slopes. We present analytic expressions for the amplitudes that cover all t range completely, while values of total cross section σ, ratio ρ, B I , and B R enter consistently to describe forward scattering. It is stressed that the identification of the amplitudes is an essential step for the description of elastic scattering, and pointed out the importance of the experimental investigation of the transition range from non-perturbative to perturbative dynamics, which may confirm the three gluon exchange mechanism observed at lower energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Because the present data stop at about 2.5 GeV2, the quantity β R is difficult to fix uniquely.

References

  1. G. Antchev et al. (TOTEM Collaboration), Europhys. Lett. 95, 41001 (2011)

    Article  ADS  Google Scholar 

  2. G. Antchev et al. (TOTEM Collaboration), Europhys. Lett. 96, 21002 (2011)

    Article  ADS  Google Scholar 

  3. CERN-PH-EP-2012-239 and Durham Data Basis, K. Eggert Talk at 2012 LHC days, Split, Croatia, 1–6 October 2012

  4. H.G. Dosch, Phys. Lett. B 190, 177 (1987)

    Article  ADS  Google Scholar 

  5. H.G. Dosch, E. Ferreira, A. Kramer, Phys. Rev. D 50, 1992 (1994)

    Article  ADS  Google Scholar 

  6. E. Ferreira, F. Pereira, Phys. Rev. D 59, 014008 (1998)

    Article  Google Scholar 

  7. E. Ferreira, F. Pereira, Phys. Rev. D 61, 077507 (2000)

    Article  ADS  Google Scholar 

  8. E. Ferreira, Int. J. Mod. Phys. E 16, 2893 (2007)

    Article  ADS  Google Scholar 

  9. W. Faissler et al., Phys. Rev. D 23, 33 (1981)

    Article  ADS  Google Scholar 

  10. A. Donnachie, P.V. Landshoff, Z. Phys. C 2, 55 (1979)

    Article  ADS  Google Scholar 

  11. A. Donnachie, P.V. Landshoff, Phys. Lett. B 387, 637 (1996)

    Article  ADS  Google Scholar 

  12. E. Nagy et al., Nucl. Phys. B 150, 221 (1979)

    Article  ADS  Google Scholar 

  13. N. Amos et al., Nucl. Phys. B 262, 689 (1985)

    Article  ADS  Google Scholar 

  14. A. Martin, Phys. Lett. B 404, 137 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Moriguchi et al., Mathematical Formulas III (Suugaku Koushiki III). Iwanami Zensho 244, 10th edn. (Iwanami, Tokyo, 1971), p. 201

    Google Scholar 

  16. C. Bourrely, J.M. Myers, J. Soffer, T.T. Wu, Phys. Rev. D 85, 096009 (2012)

    Article  ADS  Google Scholar 

  17. V.A. Petrov, A.V. Prokudin, Eur. Phys. J. C 23, 135 (2002)

    Article  ADS  Google Scholar 

  18. D.A. Fagundes, E.G.S. Luna, M.J. Menon, A.A. Natale, Nucl. Phys. A 886, 48 (2012)

    Article  ADS  Google Scholar 

  19. M.M. Islam, R.J. Luddy, A.V. Prokudin, Int. J. Mod. Phys. A 21(21), 1 (2006)

    Article  MATH  ADS  Google Scholar 

  20. M.M. Islam, R.J. Luddy, A.V. Prokudin, Phys. Lett. B 605, 115 (2005)

    Article  ADS  Google Scholar 

  21. L.L. Jenkovszky, A.I. Lengyel, D.I. Lontkovskyi, Int. J. Mod. Phys. A 26, 4755 (2011)

    Article  ADS  Google Scholar 

  22. A. Kendi, E. Ferreira, T. Kodama, arXiv:0905.1955 [hep-ph]

  23. G.B. West, D. Yennie, Ann. Phys. 3, 190 (1958)

    Article  Google Scholar 

  24. V. Kundrát, M. Lokajicek, Phys. Lett. B 611, 102 (2005)

    Article  ADS  Google Scholar 

  25. V. Kundrát, M. Lokajicek, I. Vrococ, Phys. Lett. B 656, 182 (2007)

    Article  ADS  Google Scholar 

  26. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions

  27. R. Cahn, Z. Phys. C 15, 253 (1982)

    Article  ADS  Google Scholar 

  28. O.V. Selyugin, Phys. Rev. D 60, 074028 (1999)

    Article  ADS  Google Scholar 

  29. V.A. Petrov, E. Predazzi, A.V. Prokudin, Eur. Phys. J. C 28, 525 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the members of the Totem Collaboration, particularly to K. Osterberg, S. Giani and M. Deile, for offering an opportunity of presentation and discussion of the present work. The authors wish to thank CNPq, PRONEX, and FAPERJ for financial support. A part of this work has been done while TK stayed as a visiting professor at EMMI-ExtreMe Matter Institute/GSI at FIAS, Johann Wolfgang Universität, Frankfurt am Main. TK expresses his thanks for the hospitality of Profs. H. Stoecker and D. Rischke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ferreira.

Appendix: The Coulomb phase

Appendix: The Coulomb phase

Here we present an expression for the Coulomb interference phase appropriate for forward scattering amplitudes with B R B I [22].

The starting point is the expression for the phase obtained by West and Yennie [23]

(A.1)

where the signs (−/+) are applied to the choices \(\mathrm{pp}/\mathrm{p}\bar{\mathrm{p}}\) respectively. The quantity p is the proton momentum in center of mass system, and at high energies 4p 2s.

For small |t|, assuming that F N(s,t′) keeps the same form for large |t′| (this approximation should not have practical importance for the results), we have

(A.2)

where

$$ c\equiv\rho e^{(B_{R}-B_{I})t/2}. $$
(A.3)

The integrals that appear in the evaluation of Eq. (A.1) are reduced to the form [24, 25]

$$ I(B)=\int_{-4p^{2}}^{0}\frac{dt^{\prime}}{|t^{\prime}-t|}\bigl[1-e^{B(t^{\prime}-t)/2} \bigr], $$
(A.4)

that is solved in terms of exponential integrals [26] as

(A.5)

The real and imaginary parts of the phase are then written

$$ \varPhi_{R}(s,t) =(-/+) \biggl[\ln \biggl(- \frac{t}{s} \biggr) + \frac{1}{c^{2}+1} \bigl[ c^{2} I(B_{R})+I(B_{I}) \bigr] \biggr], $$
(A.6)

and

$$ \varPhi_{I}(s,t) =(-/+) \frac{c}{c^{2}+1} \bigl[ I(B_{I})-I(B_{R}) \bigr] . $$
(A.7)

With σ in mb and t in GeV2, the practical expression for /dt in terms of the parameters σ, ρ, B I , and B R is

(A.8)

At high energies and small |t| we simplify 4p 2+ts and then the functional form of I(B) is written

(A.9)

For large s, the term E 1(Bs/2) can be neglected, and the phase becomes insensitive to s.

The usual expression from West and Yennie

$$ \alpha\varPhi_{WY}=(-/+)\alpha \biggl[\gamma+\ln \biggl(- \frac{Bt}{2} \biggr) \biggr] $$
(A.10)

can be obtained from Eq. (A.6) with B R =B I =B and using the low t behavior

$$E_{i} \biggl[-\frac{Bt}{2} \biggr] \approx\gamma+ \log- \frac{Bt}{2} . $$

We recall that the value of the slope B usually taken from the experimental /dt data is the average given by Eq. (20).

We obtain [22] that the values of αΦ I (s,t) are very small so that the imaginary part of the phase can be safely put equal do zero.

The construction of the Coulomb phase has been studied in the eikonal formalism appropriate for the interference of Coulomb and nuclear interactions [24, 25, 27, 28] with special attention given to the influence of the proton electromagnetic form factor. These treatments keep the assumption that the real part of the nuclear amplitude has the same slope as the imaginary part, and the results are not very different from the West Yennie formula. Some of these results have been tested against the data [29].

Figure 12 shows the values of the Coulomb interference phase in the kinematical conditions of the 7 TeV LHC experiment. We show together the phase obtained with the expression [27]

(A.11)

where the proton form factor has been used with exponential form, Λ 2=0.71 GeV2, and B is taken as equal to B I .

Fig. 12
figure 12

Values of the Coulomb interference phase evaluated in the kinematical conditions of pp elastic scattering at 7 TeV, with account made for the difference in the slopes of the real and imaginary amplitudes. For comparison we show the phase obtained with the basic formula [27] of Eq. (A.11)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohara, A.K., Ferreira, E. & Kodama, T. Amplitudes and observables in pp elastic scattering at \(\sqrt{s}=7\ \mbox{TeV}\) . Eur. Phys. J. C 73, 2326 (2013). https://doi.org/10.1140/epjc/s10052-013-2326-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2326-9

Keywords

Navigation