Skip to main content
Log in

Electroweak supersymmetry around the electroweak scale

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Inspired by the phenomenological constraints, LHC supersymmetry and Higgs searches, dark matter search as well as string model building, we propose the electroweak supersymmetry around the electroweak scale: the squarks and/or gluinos are around a few TeV while the sleptons, sneutrinos, bino and winos are within 1 TeV. The higgsinos can be either heavy or light. We consider the bino as the dominant component of dark matter candidate, and the observed dark matter relic density is achieved via the neutralino–stau coannihilations. Considering the Generalized Minimal Supergravity (GmSUGRA), we show explicitly that electroweak supersymmetry can be realized, and gauge coupling unification can be preserved. With two scenarios, we study the viable parameter spaces that satisfy all the current phenomenological constraints, and we present the concrete benchmark points. Furthermore, we comment on the fine-tuning problem and LHC searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.R. Ellis, S. Kelley, D.V. Nanopoulos, Phys. Lett. B 249, 441 (1990)

    Article  ADS  Google Scholar 

  2. J.R. Ellis, S. Kelley, D.V. Nanopoulos, Phys. Lett. B 260, 131 (1991)

    Article  ADS  Google Scholar 

  3. U. Amaldi, W. de Boer, H. Furstenau, Phys. Lett. B 260, 447 (1991)

    Article  ADS  Google Scholar 

  4. P. Langacker, M.X. Luo, Phys. Rev. D 44, 817 (1991)

    Article  ADS  Google Scholar 

  5. F. Anselmo, L. Cifarelli, A. Peterman, A. Zichichi, Nuovo Cimento A 104, 1817 (1991)

    Article  ADS  Google Scholar 

  6. F. Anselmo, L. Cifarelli, A. Peterman, A. Zichichi, Nuovo Cimento A 105, 1025 (1992)

    Article  ADS  Google Scholar 

  7. J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, M. Srednicki, Phys. Lett. B 127, 233 (1983)

    Article  ADS  Google Scholar 

  8. J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984)

    Article  ADS  Google Scholar 

  9. H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983) [Erratum: Phys. Rev. Lett. 103, 099905 (2009)]

    Article  ADS  Google Scholar 

  10. G. Aad et al. (ATLAS Collaboration), arXiv:1208.0949 [hep-ex]

  11. S. Chatrchyan et al. (CMS Collaboration), arXiv:1212.6961 [hep-ex]

  12. ATLAS Collaboration, ATLAS-CONF-2012-109

  13. ATLAS Collaboration, ATLAS-CONF-2012-170

  14. CMS Collaboration, CMS-PAS-HIG-12-045

  15. L.J. Hall, D. Pinner, J.T. Ruderman, arXiv:1112.2703 [hep-ph]

  16. H. Baer, V. Barger, A. Mustafayev, arXiv:1112.3017 [hep-ph]

  17. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, arXiv:1112.3024 [hep-ph]

  18. S. Heinemeyer, O. Stal, G. Weiglein, arXiv:1112.3026 [hep-ph]

  19. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 [hep-ph]

    Article  ADS  Google Scholar 

  20. A. Arbey, M. Battaglia, F. Mahmoudi, arXiv:1112.3032 [hep-ph]

  21. M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner, arXiv:1112.3336 [hep-ph]

  22. S. Akula, B. Altunkaynak, D. Feldman, P. Nath, G. Peim, arXiv:1112.3645 [hep-ph]

  23. M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, arXiv:1112.3647 [hep-ph]

  24. U. Ellwanger, arXiv:1112.3548 [hep-ph]

  25. O. Buchmueller, R. Cavanaugh, A. De Roeck, M.J. Dolan, J.R. Ellis, H. Flacher, S. Heinemeyer, G. Isidori et al., arXiv:1112.3564 [hep-ph]

  26. J. Cao, Z. Heng, D. Li, J.M. Yang, arXiv:1112.4391 [hep-ph]

  27. J.F. Gunion, Y. Jiang, S. Kraml, arXiv:1201.0982 [hep-ph]

  28. S.F. King, M. Muhlleitner, R. Nevzorov, arXiv:1201.2671 [hep-ph]

  29. Z. Kang, J. Li, T. Li, arXiv:1201.5305 [hep-ph]

  30. C.-F. Chang, K. Cheung, Y.-C. Lin, T.-C. Yuan, arXiv:1202.0054 [hep-ph]

  31. L. Aparicio, D.G. Cerdeno, L.E. Ibanez, arXiv:1202.0822 [hep-ph]

  32. H. Baer, V. Barger, A. Mustafayev, arXiv:1202.4038 [hep-ph]

  33. D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M.R. Nolta, C.L. Bennett, B. Gold, M. Halpern et al., Astrophys. J. Suppl. Ser. 192, 16 (2011). arXiv:1001.4635 [astro-ph.CO]

    Article  ADS  Google Scholar 

  34. E. Aprile et al. (XENON100 Collaboration), Phys. Rev. Lett. 109, 181301 (2012). arXiv:1207.5988 [astro-ph.CO]

    Article  ADS  Google Scholar 

  35. E. Barberio et al. (Heavy Flavor Averaging Group (HFAG) Collaboration), arXiv:0704.3575 [hep-ex]

  36. M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007)

    Article  ADS  Google Scholar 

  37. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, J. Phys. G 38, 085003 (2011). arXiv:1105.3149 [hep-ph]

    Article  ADS  Google Scholar 

  38. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 110, 021801 (2013). arXiv:1211.2674 [Unknown]

    Article  ADS  Google Scholar 

  39. O. Buchmueller, R. Cavanaugh, A. De Roeck, J.R. Ellis, H. Flacher, S. Heinemeyer, G. Isidori, K.A. Olive et al., Eur. Phys. J. C 64, 391 (2009). arXiv:0907.5568 [hep-ph]

    Article  ADS  Google Scholar 

  40. V. Braun, Y.H. He, B.A. Ovrut, T. Pantev, Phys. Lett. B 618, 252 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. V. Braun, Y.H. He, B.A. Ovrut, T. Pantev, J. High Energy Phys. 0605, 043 (2006), and references therein

    Article  MathSciNet  ADS  Google Scholar 

  42. V. Bouchard, R. Donagi, Phys. Lett. B 633, 783 (2006), and references therein

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. M. Berkooz, M.R. Douglas, R.G. Leigh, Nucl. Phys. B 480, 265 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. L.E. Ibanez, F. Marchesano, R. Rabadan, J. High Energy Phys. 0111, 002 (2001)

    MathSciNet  Google Scholar 

  45. R. Blumenhagen, B. Kors, D. Lust, T. Ott, Nucl. Phys. B 616, 3 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. M. Cvetič, G. Shiu, A.M. Uranga, Phys. Rev. Lett. 87, 201801 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Cvetič, G. Shiu, A.M. Uranga, Nucl. Phys. B 615, 3 (2001)

    Article  ADS  MATH  Google Scholar 

  48. M. Cvetič, I. Papadimitriou, G. Shiu, Nucl. Phys. B 659, 193 (2003) [Erratum: Nucl. Phys. B 696, 298 (2004)]

    Article  ADS  MATH  Google Scholar 

  49. M. Cvetič, T. Li, T. Liu, Nucl. Phys. B 698, 163 (2004)

    Article  ADS  MATH  Google Scholar 

  50. M. Cvetič, P. Langacker, T. Li, T. Liu, Nucl. Phys. B 709, 241 (2005)

    Article  ADS  MATH  Google Scholar 

  51. C.-M. Chen, G.V. Kraniotis, V.E. Mayes, D.V. Nanopoulos, J.W. Walker, Phys. Lett. B 611, 156 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. C.-M. Chen, G.V. Kraniotis, V.E. Mayes, D.V. Nanopoulos, J.W. Walker, Phys. Lett. B 625, 96 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. C.M. Chen, T. Li, D.V. Nanopoulos, Nucl. Phys. B 732, 224 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. R. Blumenhagen, M. Cvetic, P. Langacker, G. Shiu, Annu. Rev. Nucl. Part. Sci. 55, 71 (2005), and references therein

    Article  ADS  Google Scholar 

  55. R. Donagi, M. Wijnholt, arXiv:0802.2969 [hep-th]

  56. C. Beasley, J.J. Heckman, C. Vafa, J. High Energy Phys. 0901, 058 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  57. C. Beasley, J.J. Heckman, C. Vafa, J. High Energy Phys. 0901, 059 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  58. R. Donagi, M. Wijnholt, arXiv:0808.2223 [hep-th]

  59. A. Font, L.E. Ibanez, J. High Energy Phys. 0902, 016 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  60. J. Jiang, T. Li, D.V. Nanopoulos, D. Xie, Phys. Lett. B 677, 322 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  61. J. Jiang, T. Li, D.V. Nanopoulos, D. Xie, Nucl. Phys. B 830, 195 (2010). arXiv:0905.3394 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  62. R. Blumenhagen, Phys. Rev. Lett. 102, 071601 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  63. T. Li, Phys. Rev. D 81, 065018 (2010). arXiv:0905.4563 [hep-th]

    Article  ADS  Google Scholar 

  64. B.C. Allanach, M. Battaglia, G.A. Blair, M.S. Carena, A. De Roeck, A. Dedes, A. Djouadi, D. Gerdes et al., Eur. Phys. J. C 25, 113 (2002). arXiv:hep-ph/0202233

    Article  ADS  Google Scholar 

  65. T. Li, D.V. Nanopoulos, Phys. Lett. B 692, 121 (2010). arXiv:1002.4183 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  66. C. Balazs, T. Li, D.V. Nanopoulos, F. Wang, J. High Energy Phys. 1009, 003 (2010). arXiv:1006.5559 [hep-ph]

    Article  ADS  Google Scholar 

  67. J.R. Ellis, K. Enqvist, D.V. Nanopoulos, K. Tamvakis, Phys. Lett. B 155, 381 (1985)

    Article  ADS  Google Scholar 

  68. M. Drees, Phys. Lett. B 158, 409 (1985)

    Article  ADS  Google Scholar 

  69. G. Anderson, H. Baer, C.H. Chen, X. Tata, Phys. Rev. D 61, 095005 (2000)

    Article  ADS  Google Scholar 

  70. N. Chamoun, C.S. Huang, C. Liu, X.H. Wu, Nucl. Phys. B 624, 81 (2002)

    Article  ADS  Google Scholar 

  71. J. Chakrabortty, A. Raychaudhuri, Phys. Lett. B 673, 57 (2009)

    Article  ADS  Google Scholar 

  72. S.P. Martin, Phys. Rev. D 79, 095019 (2009)

    Article  ADS  Google Scholar 

  73. S. Bhattacharya, J. Chakrabortty, Phys. Rev. D 81, 015007 (2010)

    Article  ADS  Google Scholar 

  74. D. Feldman, Z. Liu, P. Nath, Phys. Rev. D 80, 015007 (2009)

    Article  ADS  Google Scholar 

  75. N. Chamoun, C.-S. Huang, C. Liu, X.-H. Wu, J. Phys. G 37, 105016 (2010). arXiv:0909.2374 [hep-ph]

    Article  ADS  Google Scholar 

  76. T. Li, J.A. Maxin, D.V. Nanopoulos, Phys. Lett. B 701, 321 (2011). arXiv:1002.1031 [hep-ph]

    Article  ADS  Google Scholar 

  77. I. Gogoladze, Q. Shafi, C.S. Un, arXiv:1112.2206 [hep-ph]

  78. J.E. Younkin, S.P. Martin, arXiv:1201.2989 [hep-ph]

  79. Y.-J. Huo, T. Li, D.V. Nanopoulos, J. High Energy Phys. 1109, 003 (2011). arXiv:1011.0964 [hep-ph]

    Article  ADS  Google Scholar 

  80. J.L. Feng, K.T. Matchev, T. Moroi, Phys. Rev. Lett. 84, 2322 (2000). arXiv:hep-ph/9908309

    Article  ADS  Google Scholar 

  81. J.L. Feng, K.T. Matchev, T. Moroi, Phys. Rev. D 61, 075005 (2000). arXiv:hep-ph/9909334

    Article  ADS  Google Scholar 

  82. K.L. Chan, U. Chattopadhyay, P. Nath, Phys. Rev. D 58, 096004 (1998). arXiv:hep-ph/9710473

    Article  ADS  Google Scholar 

  83. A. Djouadi, J.L. Kneur, G. Moultaka, Comput. Phys. Commun. 176, 426 (2007)

    Article  ADS  MATH  Google Scholar 

  84. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367 (2007). arXiv:hep-ph/0607059

    Article  ADS  MATH  Google Scholar 

  85. G. Belanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati, A. Semenov, Comput. Phys. Commun. 182, 842 (2011). arXiv:1004.1092 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  86. M. Lancaster (Tevatron Electroweak Working Group and for the CDF and D0 Collaborations), arXiv:1107.5255 [hep-ex]

  87. B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod, P. Slavich, J. High Energy Phys. 0409, 044 (2004). hep-ph/0406166

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Natural Science Foundation of China under grant numbers 10821504 and 11075194 (T.C., J.L., T.L. and C.T.), and by the DOE grant DE-FG03-95-Er-40917 (T.L. and D.V.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, T., Li, J., Li, T. et al. Electroweak supersymmetry around the electroweak scale. Eur. Phys. J. C 73, 2322 (2013). https://doi.org/10.1140/epjc/s10052-013-2322-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2322-0

Keywords

Navigation