Skip to main content
Log in

Induced Matter Theory of gravity from a Weitzenböck 5D vacuum and pre-big bang collapse of the universe

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We extend the Induced Matter Theory of gravity (IMT) to 5D curved spacetimes by using the Weitzenböck representation of connections on a 5D curved spacetime. In this representation the 5D curvature tensor becomes null, so that we can make a static foliation on the extra non-compact coordinate to induce in the Weitzenböck representation the Einstein equations. Once we have done it, we can rewrite the effective 4D Einstein equations in the Levi-Civita representation. This generalization of IMT opens a huge window of possible applications for this theory. A pre-big bang collapsing scenario is explored as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In our conventions indices “a,b,c,…,h” run from 1 to 5, “A,B,C,…,H” run from 1 to 5, Greek indices α,β,γ run from 1 to 4 and indices “i,j,k,…” run from 2 to 4.

  2. Notice that for fermionic fields (for instance with spin 1/2), the Cartan equation (22) should be

    $$ \overbrace{{S}_{\beta\gamma}}^{\mathrm{4D}} - \frac{1}{2} \sigma_{\beta\gamma} S =-8 \pi G \,\underbrace{\overbrace {{T}_{\beta\gamma}}^{\mathrm{4D}}}_{(\mathrm{ant})}, $$

    where S=σ μν S μν , \(\sigma^{\mu\nu}={1\over2} [\gamma^{\mu}, \gamma^{\nu} ]\) and γ μ are the Dirac matrices. However, this issue is beyond the scope of this work.

  3. In the cases where \(M_{\mathrm{eff}}^{2} >0\) and the universe expands with a nearly constant energy density given by ρ≃〈V(φ)〉 and a pressure P≃−〈V(φ)〉, the potential (55) is a good candidate to describe inflation.

References

  1. G. Veneziano, Phys. Lett. B 265, 287 (1991)

    MathSciNet  ADS  Google Scholar 

  2. M. Gasperini, G. Veneziano, Astropart. Phys. 1, 317 (1993)

    Article  ADS  Google Scholar 

  3. M. Gasperini, G. Veneziano, Mod. Phys. Lett. A 8, 3701 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M. Gasperini, G. Veneziano, Phys. Rev. D 50, 2519 (1994)

    ADS  Google Scholar 

  5. J.E. Campbell, A Course of Differential Geometry (Clarendon, Oxford, 1926)

    MATH  Google Scholar 

  6. E. Anderson, F. Dahia, J. Lidsey, C. Romero, J. Math. Phys. 44, 5108 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. H. Liu, P.S. Wesson, Astrophys. J. 562, 1 (2001)

    Article  ADS  Google Scholar 

  8. P.S. Wesson, Phys. Lett. B 276, 299 (1992)

    MathSciNet  ADS  Google Scholar 

  9. J.M. Overduin, P.S. Wesson, Phys. Rep. 283, 303 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  10. T. Liko, Space Sci. Rev. 110, 337 (2004)

    Article  ADS  Google Scholar 

  11. P.S. Wesson, Space Sci. Rev. 59, 365 (1992)

    Article  ADS  Google Scholar 

  12. J. Ponce de Leon, Mod. Phys. Lett. A 16, 1405 (2001)

    Article  ADS  MATH  Google Scholar 

  13. S.S. Seahra, P.S. Wesson, Class. Quantum Gravity 19, 1139 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. R. Weitzenböck, Invarianten Theorie (Noordhoff, Groningen, 1923)

    Google Scholar 

  15. M. Gasperini, G. Veneziano, Phys. Rep. 373, 1 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  16. N.J. Poplawski, Phys. Lett. B 694, 181 (2010)

    MathSciNet  ADS  Google Scholar 

  17. E. Cartan, C. R. Math. Acad. Sci. Paris 174, 593 (1922)

    MATH  Google Scholar 

  18. N.J. Poplawski, Phys. Rev. D 85, 107502 (2012)

    ADS  Google Scholar 

  19. K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979). Addendum-ibid. Phys. Rev. D 24, 3312 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Ferraro, F. Fiorini, Phys. Rev. D 75, 084031 (2007)

    MathSciNet  ADS  Google Scholar 

  21. M. Bellini, Phys. Lett. B 705, 283 (2011)

    ADS  Google Scholar 

  22. M. Bellini, Phys. Lett. B 709, 309 (2012)

    MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge P.S. Wesson for his interesting comments. Furthermore, we acknowledge UNMdP and CONICET Argentina for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Bellini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, J.M., Bellini, M. Induced Matter Theory of gravity from a Weitzenböck 5D vacuum and pre-big bang collapse of the universe. Eur. Phys. J. C 73, 2317 (2013). https://doi.org/10.1140/epjc/s10052-013-2317-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2317-x

Keywords

Navigation