Skip to main content
Log in

The cos2ϕ azimuthal asymmetry of unpolarized dilepton production in \(p\bar{p}\) collisions around Z-resonance

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We calculate the cos2ϕ azimuthal asymmetry of the unpolarized \(p\bar{p}\) dilepton production process in the Z-resonance region at the Tevatron kinematic domain. Compared to the pp process, such an azimuthal asymmetry can provide additional information about a spin-related three-dimensional parton distribution function of the proton, the Boer–Mulders function. It plays a significant role in separating the contributions of the valence quarks and of the sea quarks. Besides, the Z production process is much different from the virtual photon mediate Drell–Yan process as well as the J/ψ and ϒ production processes. Our estimation indicates that this asymmetry is sizable to be detected. Therefore the available data of unpolarized proton–antiproton collision at Tevatron can contribute to our study on the spin-related structure of the nucleon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V. Barone, A. Drago, P.G. Ratcliffe, Phys. Rep. 359, 1 (2002). arXiv:hep-ph/0104283

    Article  ADS  MATH  Google Scholar 

  2. V. Barone, F. Bradamante, A. Martin, Prog. Part. Nucl. Phys. 65, 267 (2010). arXiv:1011.0909 [hep-ph]

    Article  ADS  Google Scholar 

  3. U. D’Alesio, F. Murgia, Prog. Part. Nucl. Phys. 61, 394 (2008). arXiv:0712.4328 [hep-ph]

    Article  ADS  Google Scholar 

  4. R.N. Cahn, Phys. Lett. B 78, 269 (1978)

    Article  ADS  Google Scholar 

  5. M. Arneodo et al. (European Muon Collaboration), Z. Phys. C 34, 277 (1987)

    Article  ADS  Google Scholar 

  6. J.J. Aubert et al. (European Muon Collaboration), Phys. Lett. B 130, 118 (1983)

    Article  ADS  Google Scholar 

  7. M.R. Adams et al. (E665 Collaboration), Phys. Rev. D 48, 5057 (1993)

    Article  ADS  Google Scholar 

  8. J. Breitweg et al. (ZEUS Collaboration), Phys. Lett. B 481, 199 (2000). arXiv:hep-ex/0003017

    Article  ADS  Google Scholar 

  9. S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B 551, 226 (2003). arXiv:hep-ex/0210064

    Article  ADS  Google Scholar 

  10. S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 51, 289 (2007). arXiv:hep-ex/0608053

    Article  ADS  Google Scholar 

  11. S. Falciano et al. (NA10 Collaboration), Z. Phys. C 31, 513 (1986)

    Article  ADS  Google Scholar 

  12. M. Guanziroli et al. (NA10 Collaboration), Z. Phys. C 37, 545 (1988)

    Article  ADS  Google Scholar 

  13. J.S. Conway et al. (E615 Collaboration), Phys. Rev. D 39, 92 (1989)

    Article  ADS  Google Scholar 

  14. L.Y. Zhu et al. (FNAL-E866/NuSea Collaboration), Phys. Rev. Lett. 99, 082301 (2007). arXiv:hep-ex/0609005

    Article  ADS  Google Scholar 

  15. L.Y. Zhu et al. (FNAL E866/NuSea Collaboration), Phys. Rev. Lett. 102, 182001 (2009). arXiv:0811.4589 [nucl-ex]

    Article  ADS  Google Scholar 

  16. K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 96, 232002 (2006). arXiv:hep-ex/0507063

    Article  ADS  Google Scholar 

  17. A. Ogawa et al. (Belle Collaboration), AIP Conf. Proc. 915, 575 (2007)

    Article  ADS  Google Scholar 

  18. W.J. Stirling, M.R. Whalley, J. Phys. G 19, D1 (1993)

    Article  Google Scholar 

  19. A. Brandenburg, O. Nachtmann, E. Mirkes, Z. Phys. C 60, 697 (1993)

    Article  ADS  Google Scholar 

  20. C.S. Lam, W.K. Tung, Phys. Rev. D 18, 2447 (1978)

    Article  ADS  Google Scholar 

  21. C.G. Callan, D.J. Gross, Phys. Rev. Lett. 22, 156 (1969)

    Article  ADS  Google Scholar 

  22. D. Boer, A. Brandenburg, O. Nachtmann, A. Utermann, Eur. Phys. J. C 40, 55 (2005). arXiv:hep-ph/0411068

    Article  ADS  Google Scholar 

  23. A. Brandenburg, S.J. Brodsky, V.V. Khoze, D. Müller, Phys. Rev. Lett. 73, 939 (1994). arXiv:hep-ph/9403361

    Article  ADS  Google Scholar 

  24. K.J. Eskola, P. Hoyer, M. Vänttinen, R. Vogt, Phys. Lett. B 333, 526 (1994). arXiv:hep-ph/9404322

    Article  ADS  Google Scholar 

  25. J.G. Heinrich et al., Phys. Rev. D 44, 1991 (1909)

    Google Scholar 

  26. M. Blazek, M. Biyajima, N. Suzuki, Z. Phys. C 43, 447 (1989)

    Article  ADS  Google Scholar 

  27. D. Boer, Phys. Rev. D 60, 014012 (1999). arXiv:hep-ph/9902255

    Article  ADS  Google Scholar 

  28. P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 461, 197 (1996). Erratum-ibid. B 484, 538 (1997). arXiv:hep-ph/9510301

    Article  ADS  Google Scholar 

  29. D. Boer, P.J. Mulders, Phys. Rev. D 57, 5780 (1998). arXiv:hep-ph/9711485

    Article  ADS  Google Scholar 

  30. D.W. Sivers, Phys. Rev. D 41, 83 (1990)

    Article  ADS  Google Scholar 

  31. J.C. Collins, Phys. Lett. B 536, 43 (2002). arXiv:hep-ph/0204004

    Article  ADS  Google Scholar 

  32. S.J. Brodsky, D.S. Hwang, I. Schmidt, Nucl. Phys. B 642, 344 (2002). arXiv:hep-ph/0206259

    Article  Google Scholar 

  33. L.P. Gamberg, G.R. Goldstein, K.A. Oganessyan, Phys. Rev. D 67, 071504 (2003). arXiv:hep-ph/0301018

    Article  ADS  Google Scholar 

  34. D. Boer, S.J. Brodsky, D.S. Hwang, Phys. Rev. D 67, 054003 (2003). arXiv:hep-ph/0211110

    Article  ADS  Google Scholar 

  35. R.K. Ellis, W. Furmanski, R. Petronzio, Nucl. Phys. B 207, 1 (1982)

    Article  ADS  Google Scholar 

  36. A.V. Efremov, A.V. Radyushkin, Phys. Lett. B 94, 245 (1980)

    Article  ADS  Google Scholar 

  37. J.C. Collins, D.E. Soper, Nucl. Phys. B 194, 445 (1982)

    Article  ADS  Google Scholar 

  38. X. Ji, F. Yuan, Phys. Lett. B 543, 66 (2002). arXiv:hep-ph/0206057

    Article  ADS  Google Scholar 

  39. D. Boer, P.J. Mulders, F. Pijlman, Nucl. Phys. B 667, 201 (2003). arXiv:hep-ph/0303034

    Article  ADS  Google Scholar 

  40. J.C. Collins, A. Metz, Phys. Rev. Lett. 93, 252001 (2004). arXiv:hep-ph/0408249

    Article  ADS  Google Scholar 

  41. V. Barone, S. Melis, A. Prokudin, Phys. Rev. D 81, 114026 (2010). arXiv:0912.5194 [hep-ph]

    Article  ADS  Google Scholar 

  42. V. Barone, A. Prokudin, B.-Q. Ma, Phys. Rev. D 78, 045022 (2008). arXiv:0804.3024 [hep-ph]

    Article  ADS  Google Scholar 

  43. Z. Lu, B.-Q. Ma, Phys. Rev. D 70, 094044 (2004). arXiv:hep-ph/0411043

    Article  ADS  Google Scholar 

  44. Z. Lu, B.-Q. Ma, Phys. Lett. B 615, 200 (2005). arXiv:hep-ph/0504184

    Article  ADS  Google Scholar 

  45. A. Bianconi, M. Radici, Phys. Rev. D 72, 074013 (2005). arXiv:hep-ph/0504261

    Article  ADS  Google Scholar 

  46. A.N. Sissakian, O.Y. Shevchenko, A.P. Nagaytsev, O.N. Ivanov, Phys. Rev. D 72, 054027 (2005). arXiv:hep-ph/0505214

    Article  ADS  Google Scholar 

  47. A. Sissakian, O. Shevchenko, A. Nagaytsev, O. Denisov, O. Ivanov, Eur. Phys. J. C 46, 147 (2006). arXiv:hep-ph/0512095

    Article  ADS  Google Scholar 

  48. Z. Lu, B.-Q. Ma, I. Schmidt, Phys. Lett. B 639, 494 (2006). arXiv:hep-ph/0702006

    Article  ADS  Google Scholar 

  49. V. Barone, Z. Lu, B.-Q. Ma, Eur. Phys. J. C 49, 967 (2007). arXiv:hep-ph/0612350

    Article  ADS  Google Scholar 

  50. Z. Lu, B.-Q. Ma, I. Schmidt, Phys. Rev. D 75, 014026 (2007). arXiv:hep-ph/0701255

    Article  ADS  Google Scholar 

  51. L.P. Gamberg, G.R. Goldstein, Phys. Lett. B 650, 362 (2007). arXiv:hep-ph/0506127

    Article  ADS  Google Scholar 

  52. B. Zhang, Z. Lu, B.-Q. Ma, I. Schmidt, Phys. Rev. D 77, 054011 (2008). arXiv:0803.1692 [hep-ph]

    Article  ADS  Google Scholar 

  53. B. Zhang, Z. Lu, B.-Q. Ma, I. Schmidt, Phys. Rev. D 78, 034035 (2008). arXiv:0807.0503 [hep-ph]

    Article  ADS  Google Scholar 

  54. V. Barone, S. Melis, A. Prokudin, Phys. Rev. D 82, 114025 (2010). arXiv:1009.3423 [hep-ph]

    Article  ADS  Google Scholar 

  55. Z. Lu, I. Schmidt, Phys. Rev. D 81, 034023 (2010). arXiv:0912.2031 [hep-ph]

    Article  ADS  Google Scholar 

  56. Z. Lu, I. Schmidt, Phys. Rev. D 84, 094002 (2011). arXiv:1107.4693 [hep-ph]

    Article  ADS  Google Scholar 

  57. F. Yuan, Phys. Lett. B 575, 45 (2003). arXiv:hep-ph/0308157

    Article  ADS  Google Scholar 

  58. B. Pasquini, M. Pincetti, S. Boffi, Phys. Rev. D 76, 034020 (2007). arXiv:hep-ph/0612094

    Article  ADS  Google Scholar 

  59. M. Göckeler et al. (QCDSF and UKQCD Collaborations), Phys. Rev. Lett. 98, 222001 (2007). arXiv:hep-lat/0612032

    Article  Google Scholar 

  60. M. Burkardt, B. Hannafious, Phys. Lett. B 658, 130 (2008). arXiv:0705.1573 [hep-ph]

    Article  ADS  Google Scholar 

  61. T. Liu, B.-Q. Ma, Eur. Phys. J. C 72, 2037 (2012). arXiv:1203.5579 [hep-ph]

    Article  ADS  Google Scholar 

  62. F. Giordano et al. (HERMES Collaboration), AIP Conf. Proc. 1149, 423 (2009). arXiv:0901.2438 [hep-ex]

    Article  ADS  Google Scholar 

  63. W. Kafer (COMPASS Collaboration), arXiv:0808.0114 [hep-ex]

  64. M. Osipenko et al. (CLAS Collaboration), Phys. Rev. D 80, 032004 (2009). arXiv:0809.1153 [hep-ex]

    Article  ADS  Google Scholar 

  65. V. Barone, Z. Lu, B.-Q. Ma, Phys. Lett. B 632, 277 (2006). arXiv:hep-ph/0512145

    Article  ADS  Google Scholar 

  66. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 106, 241801 (2011). arXiv:1103.5699 [hep-ex]

    Article  ADS  Google Scholar 

  67. J.C. Collins, D.E. Soper, Phys. Rev. D 16, 2219 (1977)

    Article  ADS  Google Scholar 

  68. C.S. Lam, W.-K. Tung, Phys. Rev. D 21, 2712 (1980)

    Article  ADS  Google Scholar 

  69. E. Mirkes, J. Ohnemus, Phys. Rev. D 50, 5692 (1994). arXiv:hep-ph/9406381

    Article  ADS  Google Scholar 

  70. D. Boer, W. Vogelsang, Phys. Rev. D 74, 014004 (2006). arXiv:hep-ph/0604177

    Article  ADS  Google Scholar 

  71. E.L. Berger, J.W. Qiu, R.A. Rodriguez-Pedraza, Phys. Lett. B 656, 74 (2007). arXiv:0707.3150 [hep-ph]

    Article  ADS  Google Scholar 

  72. E.L. Berger, J.W. Qiu, R.A. Rodriguez-Pedraza, Phys. Rev. D 76, 074006 (2007). arXiv:0708.0578 [hep-ph]

    Article  ADS  Google Scholar 

  73. R.J. Oakes, Nuovo Cimento A 44, 440 (1966)

    Article  ADS  Google Scholar 

  74. D. Boer, R. Jakob, P.J. Mulders, Phys. Lett. B 424, 143 (1998). arXiv:hep-ph/9711488

    Article  ADS  Google Scholar 

  75. K. Nakamura et al., Particle Data Group. J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  76. A. Bacchetta, M. Boglione, A. Henneman, P.J. Mulders, Phys. Rev. Lett. 85, 712 (2000). arXiv:hep-ph/9912490

    Article  ADS  Google Scholar 

  77. Z. Lu, B.-Q. Ma, J. Zhu, Phys. Rev. D 84, 074036 (2011). arXiv:1108.4974 [hep-ph]

    Article  ADS  Google Scholar 

  78. M.F.M. Lutz et al. (PANDA Collaboration), arXiv:0903.3905 [hep-ex]

  79. V. Barone et al. (PAX Collaboration), arXiv:hep-ex/0505054

Download references

Acknowledgements

We are greatly indebted to Prof. Liang Han for the stimulating discussion about possible experimental analysis on spin physics at Tevatron. This work is partially supported by National Natural Science Foundation of China (Grants No. 11021092, No. 10975003, No. 11035003, and No. 11120101004), by the Research Fund for the Doctoral Program of Higher Education (China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Qiang Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Ma, BQ. The cos2ϕ azimuthal asymmetry of unpolarized dilepton production in \(p\bar{p}\) collisions around Z-resonance. Eur. Phys. J. C 73, 2291 (2013). https://doi.org/10.1140/epjc/s10052-013-2291-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2291-3

Keywords

Navigation