Skip to main content
Log in

A 125.5 GeV Higgs boson in \(\mathcal{F}\)-SU(5): imminently observable proton decay, a 130 GeV gamma-ray line, and SUSY multijets & light stops at the LHC8

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We establish that the light Higgs boson mass in the context of the No-Scale Flipped SU(5) GUT with TeV-scale vector-like matter multiplets (flippons) is consistent with m h =125.5±0.5 GeV in the region of the best supersymmetry (SUSY) spectrum fit to low statistics data excesses observed by ATLAS in multijet and light stop 5 fb−1  SUSY searches at the LHC7. Simultaneous satisfaction of these disparate goals is achieved by employing a minor decrease in the SU(5) partial unification scale M 32 to lower the flippon mass, inducing a larger Higgs boson mass shift from the flippon loops. The reduction in M 32, which is facilitated by a phenomenologically favorable reduction of the low-energy strong coupling constant, moreover suggests an imminently observable (e|μ)+ π 0 proton decay with a central value time scale of 1.7×1034 years. At the same point in the model space, we find a lightest neutralino mass of m χ =145 GeV, which is suitable for the production of 130 GeV monochromatic gamma-rays through annihilations yielding associated Z-bosons; a signal with this energy signature has been identified within observations of the galactic center by the FERMI-LAT Space Telescope. In conjunction with direct correlations to the fate of the ATLAS multijet and light stop production channels presently being tested at the LHC8, we suggest that the reality of a 125.5 GeV Higgs boson affords a particularly rich company of specific and imminently testable associated observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. arXiv:1207.7214 (2012)

  2. S. Chatrchyan et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. arXiv:1207.7235 (2012)

  3. T. Aaltonen et al. (CDF Collaboration, D0 Collaboration), Evidence for a particle produced in association with weak bosons and decaying to a bottom–antibottom quark pair in Higgs boson searches at the Tevatron. arXiv:1207.6436 (2012)

  4. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Natural predictions for the Higgs boson mass and supersymmetric contributions to rare processes. Phys. Lett. B 708, 93 (2012a). arXiv:1109.2110

    Article  ADS  Google Scholar 

  5. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, A Higgs mass shift to 125 GeV and a multi-jet supersymmetry signal: miracle of the flippons at the \(\sqrt{s}=7~\mathrm{TeV}\) LHC. Phys. Lett. B 710, 207 (2012b). arXiv:1112.3024

    Article  ADS  Google Scholar 

  6. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, The golden point of no-scale and no-parameter \({\mathcal{F}}\)-SU(5). Phys. Rev. D 83, 056015 (2011a). arXiv:1007.5100

    Article  ADS  Google Scholar 

  7. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, The golden strip of correlated top quark, gaugino, and vectorlike mass in no-scale, no-parameter F-SU(5). Phys. Lett. B 699, 164 (2011b). arXiv:1009.2981

    Article  ADS  Google Scholar 

  8. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Super no-scale \({\mathcal{f}}\)-SU(5): resolving the gauge hierarchy problem by dynamic determination of M 1/2 and tanβ. Phys. Lett. B 703, 469 (2011c). arXiv:1010.4550

    Article  ADS  Google Scholar 

  9. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Blueprints of the no-scale multiverse at the LHC. Phys. Rev. D 84, 056016 (2011d). arXiv:1101.2197

    Article  ADS  Google Scholar 

  10. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, The ultrahigh jet multiplicity signal of stringy no-scale \(\mathcal{F}\)-SU(5) at the \(\sqrt{s}=7~\mathrm{TeV}\) LHC. Phys. Rev. D 84, 076003 (2011e). arXiv:1103.4160

    Article  ADS  Google Scholar 

  11. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Ultra high jet signals from stringy no-scale supergravity. arXiv:1103.2362 (2011f)

  12. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, The unification of dynamical determination and bare minimal phenomenological constraints in no-scale \(\mathcal{F}\)-SU(5). Phys. Rev. D 85, 056007 (2012c). arXiv:1105.3988

    Article  ADS  Google Scholar 

  13. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, The race for supersymmetric dark matter at XENON100 and the LHC: stringy correlations from no-scale \(\mathcal{F}\)-SU(5). arXiv:1106.1165 (2011g)

  14. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, A two-tiered correlation of dark matter with missing transverse energy: reconstructing the lightest supersymmetric particle mass at the LHC. J. High Energy Phys. 02, 129 (2012d). arXiv:1107.2375

    Article  ADS  Google Scholar 

  15. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Prospects for discovery of supersymmetric no-scale F-SU(5) at the once and future LHC. Nucl. Phys. B 859, 96 (2012e). arXiv:1107.3825

    Article  ADS  Google Scholar 

  16. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Has SUSY gone undetected in 9-jet events? A ten-fold enhancement in the LHC signal efficiency. arXiv:1108.5169 (2011h)

  17. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, The F-landscape: dynamically determining the multiverse. Int. J. Mod. Phys. A 27, 1250121 (2012f). arXiv:1111.0236

    Article  ADS  Google Scholar 

  18. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Profumo di SUSY: suggestive correlations in the ATLAS and CMS high jet multiplicity data. arXiv:1111.4204 (2011i)

  19. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, A multi-axis best fit to the collider supersymmetry search: the aroma of stops and gluinos at the \(\sqrt{s}=7~\mathrm{TeV}\) LHC. arXiv:1203.1918 (2012g)

  20. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Chanel No 5 (fb−1): the sweet fragrance of SUSY. arXiv:1205.3052 (2012h)

  21. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Non-trivial supersymmetry correlations between ATLAS and CMS observations. arXiv:1206.0293 (2012i)

  22. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Correlating LHCb \(B_{s}^{0}\to \mu^{+} \mu^{-}\) results with the ATLAS–CMS multijet supersymmetry search. Europhys. Lett. 100, 21001 (2012j). arXiv:1206.2633

    Article  ADS  Google Scholar 

  23. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Testing no-scale \({\mathcal{F}}\)-SU(5): a 125 GeV Higgs boson and SUSY at the 8 TeV LHC. Phys. Lett. B 718, 70 (2012k). arXiv:1207.1051

    Article  ADS  Google Scholar 

  24. Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 4.7 fb−1 of \(\sqrt{s}=7~\mathrm{TeV}\) proton–proton collision data. ATLAS-CONF-2012-033. arXiv:1208.0949, http://cdsweb.cern.ch (2012a)

  25. Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in \({\mathcal{L}}=4.7~\mathrm{fb}^{-1}\) of \(\sqrt{s}=7~\mathrm{TeV}\) proton–proton collisions. ATLAS-CONF-2012-037, http://cdsweb.cern.ch (2012b)

  26. Search for supersymmetry in hadronic final states using M T2 with the CMS detector at \(\sqrt{s}=7~\mathrm{TeV}\), SUS-12-002-pas. http://cdsweb.cern.ch (2012)

  27. O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis, et al., Higgs and supersymmetry. Eur. Phys. J. C 72, 2020 (2012). arXiv:1112.3564

    Article  ADS  Google Scholar 

  28. J.R. Ellis, J.L. Lopez, D.V. Nanopoulos, Lowering alpha-s by flipping SU(5). Phys. Lett. B 371, 65 (1996). arXiv:hep-ph/9510246

    Article  ADS  Google Scholar 

  29. S.M. Barr, A new symmetry breaking pattern for SO(10) and proton decay. Phys. Lett. B B112, 219 (1982)

    MathSciNet  ADS  Google Scholar 

  30. J.P. Derendinger, J.E. Kim, D.V. Nanopoulos, Anti-SU(5). Phys. Lett. B 139, 170 (1984)

    Article  ADS  Google Scholar 

  31. I. Antoniadis, J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, Supersymmetric flipped SU(5) revitalized. Phys. Lett. B 194, 231 (1987)

    Article  ADS  Google Scholar 

  32. J. Jiang, T. Li, D.V. Nanopoulos, Testable flipped SU(5)×U(1) X models. Nucl. Phys. B 772, 49 (2007). arXiv:hep-ph/0610054

    Article  ADS  MATH  Google Scholar 

  33. J. Jiang, T. Li, D.V. Nanopoulos, D. Xie, F-SU(5). Phys. Lett. B 677, 322 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  34. J. Jiang, T. Li, D.V. Nanopoulos, D. Xie, Flipped SU(5)×U(1) X models from F-theory. Nucl. Phys. B 830, 195 (2010). arXiv:0905.3394

    Article  MathSciNet  ADS  Google Scholar 

  35. T. Li, D.V. Nanopoulos, J.W. Walker, Elements of F-ast proton decay. Nucl. Phys. B 846, 43 (2011j). arXiv:1003.2570

    Article  ADS  MATH  Google Scholar 

  36. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Dark matter, proton decay and other phenomenological constraints in \({\mathcal{F}}\)-SU(5). Nucl. Phys. B 848, 314 (2011k). arXiv:1003.4186

    Article  ADS  MATH  Google Scholar 

  37. E. Cremmer, S. Ferrara, C. Kounnas, D.V. Nanopoulos, Naturally vanishing cosmological constant in N=1 supergravity. Phys. Lett. B 133, 61 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  38. J.R. Ellis, A.B. Lahanas, D.V. Nanopoulos, K. Tamvakis, No-scale supersymmetric standard model. Phys. Lett. B 134, 429 (1984a)

    Article  ADS  Google Scholar 

  39. J.R. Ellis, C. Kounnas, D.V. Nanopoulos, Phenomenological SU(1,1) supergravity. Nucl. Phys. B 241, 406 (1984b)

    Article  ADS  Google Scholar 

  40. J.R. Ellis, C. Kounnas, D.V. Nanopoulos, No scale supersymmetric guts. Nucl. Phys. B 247, 373 (1984c)

    Article  ADS  Google Scholar 

  41. A.B. Lahanas, D.V. Nanopoulos, The road to no scale supergravity. Phys. Rep. 145, 1 (1987)

    Article  ADS  Google Scholar 

  42. J.L. Lopez, D.V. Nanopoulos, K.-j. Yuan, The search for a realistic flipped SU(5) string model. Nucl. Phys. B 399, 654 (1993). arXiv:hep-th/9203025

    Article  ADS  Google Scholar 

  43. J.R. Ellis, D.V. Nanopoulos, and K.A. Olive, Lower limits on soft supersymmetry breaking scalar masses. Phys. Lett. B 525, 308 (2002). arXiv:hep-ph/0109288

    Article  ADS  Google Scholar 

  44. J. Ellis, A. Mustafayev, K.A. Olive, Resurrecting no-scale supergravity phenomenology. Eur. Phys. J. C 69, 219 (2010). arXiv:1004.5399

    Article  ADS  Google Scholar 

  45. K. Babu, I. Gogoladze, M.U. Rehman, Q. Shafi, Higgs boson mass, sparticle spectrum and little hierarchy problem in extended MSSM. Phys. Rev. D 78, 055017 (2008). arXiv:0807.3055

    Article  ADS  Google Scholar 

  46. S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry. Phys. Rev. D 81, 035004 (2010). arXiv:0910.2732

    Article  ADS  Google Scholar 

  47. R.P. Feynman, The Feynman Lectures on Physics, vol. III (1964)

    Google Scholar 

  48. D. Bandurin (D0 and CDF Collaborations), QCD measurements at the Tevatron. arXiv:1112.0051 (2011)

  49. E. Komatsu et al. (WMAP), Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2010). arXiv:1001.4538

    Article  ADS  Google Scholar 

  50. G. Belanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, et al., Indirect search for dark matter with micrOMEGAs2.4. Comput. Phys. Commun. 182, 842 (2011). arXiv:1004.1092

    Article  ADS  MATH  Google Scholar 

  51. A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426 (2007). arXiv:hep-ph/0211331

    Article  ADS  MATH  Google Scholar 

  52. Y. Huo, T. Li, D.V. Nanopoulos, C. Tong, The lightest CP-even Higgs boson mass in the testable flipped SU(5)×U(1) X models from F-theory. Phys. Rev. D 85, 116002 (2012). arXiv:1109.2329

    Article  ADS  Google Scholar 

  53. Search for direct top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in \(\sqrt{s}=7~\mathrm{TeV}\) pp collisions using 4.7 fb−1 of ATLAS data. ATLAS-CONF-2012-073, http://cdsweb.cern.ch (2012c)

  54. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker (2011l, in preparation)

  55. J. Hewett, H. Weerts, R. Brock, J. Butler, B. Casey, et al., Fundamental physics at the intensity frontier. arXiv:1205.2671 (2012)

  56. H. Murayama, A. Pierce, Not even decoupling can save minimal supersymmetric SU(5). Phys. Rev. D 65, 055009 (2002). arXiv:hep-ph/0108104

    Article  ADS  Google Scholar 

  57. J.R. Ellis, J.L. Lopez, D.V. Nanopoulos, K.A. Olive, Flipped angles and phases: a systematic study. Phys. Lett. B 308, 70 (1993). arXiv:hep-ph/9303307

    Article  ADS  Google Scholar 

  58. C. Weniger, A tentative gamma-ray line from dark matter annihilation at the Fermi large area telescope. arXiv:1204.2797 (2012)

  59. A. Hektor, M. Raidal, E. Tempel, An evidence for indirect detection of dark matter from galaxy clusters in Fermi-LAT data. arXiv:1207.4466 (2012)

  60. K. Nakamura, Hyper-Kamiokande: a next generation water Cherenkov detector. Int. J. Mod. Phys. A 18, 4053 (2003)

    Article  ADS  Google Scholar 

  61. E. Kearns, Next generation proton decay. Talk given for the DUSEL planning meeting at Fermilab (2008)

  62. S. Raby et al., DUSEL theory white paper. arXiv:0810.4551 (2008)

Download references

Acknowledgements

We acknowledge the generous contribution of Chunli Tong and Yunjie Huo of the State Key Laboratory of Theoretical Physics in Beijing for their calculation of Eqs. (6)–(8). This research was supported in part by the DOE grant DE-FG03-95-Er-40917 (TL and DVN), by the Natural Science Foundation of China under grant numbers 10821504, 11075194, and 11135003 (TL), and by the Mitchell-Heep Chair in High Energy Physics (JAM). We also thank Sam Houston State University for providing high performance computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Maxin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Maxin, J.A., Nanopoulos, D.V. et al. A 125.5 GeV Higgs boson in \(\mathcal{F}\)-SU(5): imminently observable proton decay, a 130 GeV gamma-ray line, and SUSY multijets & light stops at the LHC8. Eur. Phys. J. C 72, 2246 (2012). https://doi.org/10.1140/epjc/s10052-012-2246-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2246-0

Keywords

Navigation