Skip to main content
Log in

\(\mathcal{O}(\alpha_{s})\) corrections to the B-hadron energy distribution of the top decay in the general two Higgs doublet model considering GM-VFN scheme

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present our analytic results for the NLO corrections to the partial decay width tH + b followed by bBX for nonzero b-quark mass (m b ≠0) in the Fixed-Flavor-Number scheme (FFNs) taking the H + boson to be stable. To make our predictions for the energy distribution of the outgoing bottom-flavored hadron (B-hadron) as a function of the normalized B-energy fraction x B , we apply the General-Mass Variable-Flavor-Number scheme (GM-VFNs) in the general two Higgs doublet model (2HDM). In order to describe both the b-quark and the gluon hadronizations in top decay we use fragmentation functions extracted from data from e + e machines. We find that the most reliable prediction for the B-hadron energy spectrum is made in the GM-VFN scheme, especially when the second model in the general 2HDM is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tevatron EW Working Group and CDF & D0 Collaboration, arXiv:0903.2503 [hep-ex]

  2. U. Langenfeld, S. Moch, P. Uwer, arXiv:0907.2527 [hep-ph]

  3. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)

    Article  ADS  Google Scholar 

  4. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)

    Article  ADS  Google Scholar 

  5. B.A. Kniehl, G. Kramer, S.M.M. Nejad, Nucl. Phys. B 862, 720 (2012). arXiv:1205.2528 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  6. A. Djouadi, Phys. Rep. 459, 1 (2008). hep-ph/0503173

    Article  ADS  Google Scholar 

  7. J.F. Gunion, H.E. Haber, Nucl. Phys. B 272, 1 (1986)

    Article  ADS  Google Scholar 

  8. J.F. Gunion, H.E. Haber, Nucl. Phys. B 402, 567 (1993)

    Article  Google Scholar 

  9. S.M. Moosavi Nejad, Phys. Rev. D 85, 054010 (2012)

    Article  ADS  Google Scholar 

  10. A. Ali, F. Barreiro, J. Llorente, Eur. Phys. J. C 71, 1737 (2011)

    Article  ADS  Google Scholar 

  11. ATLAS Collaboration, Search for charged Higgs bosons in the τ+jets final state in \(t\bar{t}\) decays with 1.03 fb−1 of pp collision data recorded at \(\sqrt{s}=7\ \mathrm{TeV}\) with the ATLAS experiment. ATLAS-CONF-2011-138 (2011)

  12. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972). [Yad. Fiz. 15, 781 (1972)]

    Google Scholar 

  13. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  14. Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977). [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]

    ADS  Google Scholar 

  15. G. Corcella, A.D. Mitov, Nucl. Phys. B 623, 247 (2002)

    Article  ADS  Google Scholar 

  16. G. Corcella, F. Mescia, Eur. Phys. J. C 65, 171 (2009)

    Article  ADS  Google Scholar 

  17. G. Corcella, F. Mescia, Eur. Phys. J. C 68, 687(E) (2010)

    Article  ADS  Google Scholar 

  18. S. Biswas, K. Melnikov, M. Schulze, J. High Energy Phys. 08, 048 (2010)

    ADS  Google Scholar 

  19. J.F. Gunion, H. Haber, G. Kane, S. Dawson, The Higgs Hunter’s Guide (Addison-Wesley, Reading, 1990), and references therein

    Google Scholar 

  20. A. Kadeer, J.G. Körner, M.C. Mauser, Eur. Phys. J. C 54, 175 (2008)

    Article  ADS  Google Scholar 

  21. A. Czarnecki, S. Davidson, Phys. Rev. D 47, 3063 (1993)

    Article  ADS  Google Scholar 

  22. J. Liu, Y.P. Yao, Phys. Rev. D 46, 5196 (1992)

    Article  ADS  Google Scholar 

  23. S. Dittmaier, Nucl. Phys. B 675, 447 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. J.C. Collins, Phys. Rev. D 58, 094002 (1998)

    Article  ADS  Google Scholar 

  25. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. D 71, 014018 (2005)

    Article  ADS  Google Scholar 

  26. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. Lett. 96, 012001 (2006)

    Article  ADS  Google Scholar 

  27. B. Mele, P. Nason, Nucl. Phys. B 361, 626 (1991)

    Article  ADS  Google Scholar 

  28. J.P. Ma, Nucl. Phys. B 506, 329 (1997)

    Article  ADS  Google Scholar 

  29. S. Keller, E. Laenen, Phys. Rev. D 59, 114004 (1999)

    Article  ADS  Google Scholar 

  30. M. Cacciari, S. Catani, Nucl. Phys. B 617, 253 (2001)

    Article  ADS  Google Scholar 

  31. K. Melnikov, A. Mitov, Phys. Rev. D 70, 034027 (2004)

    Article  ADS  Google Scholar 

  32. A. Mitov, Phys. Rev. D 71, 054021 (2005)

    Article  ADS  Google Scholar 

  33. A. Ali, E.A. Kuraev, Y.M. Bystritskiy, Eur. Phys. J. C 67, 377 (2010)

    Article  ADS  Google Scholar 

  34. B. Abbott et al. (D0 Collaborations), Phys. Rev. Lett. 82, 4975 (1999)

    Article  ADS  Google Scholar 

  35. A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 96, 042003 (2006)

    Article  ADS  Google Scholar 

  36. G. Aad et al. (ATLAS Collaboration), J. Instrum. 3, S08003 (2008)

    Article  Google Scholar 

  37. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  38. A. Heister et al. (ALEPH Collaboration), Phys. Lett. B 512, 30 (2001)

    Article  ADS  Google Scholar 

  39. G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 29, 463 (2003)

    Article  ADS  Google Scholar 

  40. K. Abe et al. (SLD Collaboration), Phys. Rev. Lett. 84, 4300 (2000)

    Article  ADS  Google Scholar 

  41. K. Abe et al. (SLD Collaboration), Phys. Rev. D 65, 092006 (2002)

    Article  ADS  Google Scholar 

  42. K. Abe et al. (SLD Collaboration), Phys. Rev. D 66, 079905 (2002)

    Article  ADS  Google Scholar 

  43. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. D 77, 014011 (2008)

    Article  ADS  Google Scholar 

  44. B. Abbott et al. (D0 Collaboration), Phys. Rev. D 58, 052001 (1998)

    Article  ADS  Google Scholar 

  45. T. Affolder et al. (CDF Collaboration), Phys. Rev. D 63, 032003 (2001)

    Article  ADS  Google Scholar 

  46. S. Schael et al. (ALEPH and DELPHI and L3 and OPAL and LEP Working Group for Higgs Boson Searches Collaborations), Eur. Phys. J. C 47, 547 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank Professor Bernd Kniehl for reading the manuscript and also for his important comments. I would also like to thank Dr Mathias Butenschon for reading and improving the manuscript. This work was supported by Yazd university and the Institute for Research in Fundamental Science (IPM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohammad Moosavi Nejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moosavi Nejad, S.M. \(\mathcal{O}(\alpha_{s})\) corrections to the B-hadron energy distribution of the top decay in the general two Higgs doublet model considering GM-VFN scheme. Eur. Phys. J. C 72, 2224 (2012). https://doi.org/10.1140/epjc/s10052-012-2224-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2224-6

Keywords

Navigation