Skip to main content
Log in

Birkhoff’s theorem in f(T) gravity up to the perturbative order

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

f(T) gravity, a generally modified teleparallel gravity, has become very popular in recent times, as it is able to reproduce the unification of inflation and late-time acceleration without the need of a dark energy component or an inflation field. In this present work, we investigate specifically the range of validity of Birkhoff’s theorem with the general tetrad field via perturbative approach. At zero order, Birkhoff’s theorem is valid and the solution is the well known Schwarzschild–(A)dS metric. Then considering the special case of the diagonal tetrad field, we present a new spherically symmetric solution in the frame of f(T) gravity up to the perturbative order. The results with the diagonal tetrad field satisfy the physical equivalence between the Jordan and the so-called Einstein frames, which are realized via conformal transformation, at least up to the first perturbative order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 217 (1928)

  2. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 224 (1928)

  3. R. Aldrovandi, J.G. Pereira, An introduction to teleparallel gravity Instituto de Fisica Teorica, UNSEP, Sao Paulo. http://www.ift.unesp.br/gcg/tele.pdf (2007)

  4. J. Garechi, arXiv:1010.2654 (2010)

  5. S. Nojiri, S.D. Odintsov, Gen. Relativ. Gravit. 36, 1765–1780 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59–144 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Li et al., Commun. Theor. Phys. 56, 525–604 (2011)

    Article  ADS  MATH  Google Scholar 

  9. X.H. Meng, P. Wang, Class. Quantum Gravity 20, 4949 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. X.H. Meng, P. Wang, Class. Quantum Gravity 21, 951 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. X.H. Meng, P. Wang, Class. Quantum Gravity 21, 2029 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. X.H. Meng, P. Wang, Class. Quantum Gravity 22, 23 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. X.H. Meng, P. Wang, Gen. Relativ. Gravit. 36, 1947 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. X.H. Meng, P. Wang, Phys. Lett. B 584, 1 (2004)

    Article  ADS  Google Scholar 

  15. P. Wang, X.H. Meng, Class. Quantum Gravity 22, 283 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. J. Ren, X.H. Meng, Phys. Lett. B 633, 1 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J. Ren, X.H. Meng, Phys. Lett. B 636, 5 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. M.G. Hu, X.H. Meng, Phys. Lett. B 635, 186 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. J. Ren, X.H. Meng, Int. J. Mod. Phys. D 16, 1341 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. E. Flanagan, Class. Quantum Gravity 21, 417 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Nojiri, S. Odintsov, Phys. Lett. B 576, 5 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. S. Nojiri, S. Odintsov, Phys. Rev. D 68, 123512 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  23. D. Volink, Phys. Rev. D 68, 063510 (2003)

    Article  ADS  Google Scholar 

  24. S. Capozziello, M. Francaviglia, Gen. Relativ. Gravit. 40, 357 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. T. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451–497 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    ADS  Google Scholar 

  27. X.-h. Meng, X.-l. Du, Phys. Lett. B 710, 493–499 (2012)

    Article  ADS  Google Scholar 

  28. X.-h. Meng, X.-l. Du, Commun. Theor. Phys. 57, 227 (2012)

    Article  ADS  MATH  Google Scholar 

  29. W. Hu, I. Sawicky, Phys. Rev. D 76, 064004 (2007)

    Article  ADS  Google Scholar 

  30. S. Appleby, R. Battye, Phys. Lett. B 654, 7–12 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. A.A. Starobinsky, JETP Lett. 86, 157–163 (2007)

    Article  ADS  Google Scholar 

  32. R. Ferraro, F. Fiorini, Phys. Rev. D 75, 084031 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  33. G.R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009)

    Article  ADS  Google Scholar 

  34. E.V. Linder, Phys. Rev. D 81, 127301 (2010)

    Article  ADS  Google Scholar 

  35. B.J. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 064035 (2011)

    Article  ADS  Google Scholar 

  36. R.J. Yang, Eur. Phys. Lett. 93, 60001 (2011)

    Article  ADS  Google Scholar 

  37. X.-h. Meng, Y.-b. Wang, Eur. Phys. J. C 71, 1755 (2011)

    Article  ADS  Google Scholar 

  38. H. Dong, Y.-b. Wang, X.-h. Meng, Eur. Phys. J. C 72, 2002 (2012)

    Article  ADS  Google Scholar 

  39. R. Myrzakulov, arXiv:1006.1120 (2010)

  40. R.J. Yang, Eur. Phys. J. C 71, 1797 (2011)

    Article  ADS  Google Scholar 

  41. G.R. Bengochea, Phys. Lett. B 695, 405–411 (2011)

    Article  ADS  Google Scholar 

  42. P. Wu, H. Yu, Phys. Lett. B 693, 415–420 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  43. P. Wu, H. Yu, Phys. Lett. B 692, 176 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  44. B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 104017 (2011)

    Article  ADS  Google Scholar 

  45. T.P. Sotiriou, B. Li, J.D. Barrow, Phys. Rev. D 83, 104030 (2011)

    Article  ADS  Google Scholar 

  46. C.G. Böhmer, A. Mussa, N. Tamanini, arXiv:1107.4455v2 (2011)

  47. Y.F. Cai, S.H. Chen, J.B. Dent, S. Dutta, E.N. Saridakis, arXiv:1104.4349 (2011)

  48. S.H. Chen et al., Phys. Rev. D 83, 023508 (2011)

    Article  ADS  Google Scholar 

  49. J.B. Dent, S. Dutta, E.N. Saridakis, J. Cosmol. Astropart. Phys. 1101, 009 (2011)

    Article  ADS  Google Scholar 

  50. Y.-F. Cai et al., Class. Quantum Gravity 28, 215011 (2011)

    Article  ADS  Google Scholar 

  51. K. Bamba et al., J. Cosmol. Astropart. Phys. 1101, 021 (2011)

    Article  ADS  Google Scholar 

  52. K. Bamba et al., arXiv:1008.4036 (2010)

  53. K.K. Yerzhanov et al., arXiv:1006.3879 (2010)

  54. M. Hamani Daouda et al., Eur. Phys. J. C 71, 1817 (2011)

    Article  ADS  Google Scholar 

  55. M. Hamani Daouda et al., Eur. Phys. J. C 72, 1890 (2012)

    Article  ADS  Google Scholar 

  56. N. Tamanini, C.G. Böhmer, arXiv:1204.4593 (2012)

  57. K. Bamba, S. Capozziello, S. Nojiri, S. Odintsov, arXiv:1205.3421 (2012)

  58. G.D. Birkhoff, Relativity and Modern Physics (Harvard University Press, Cambridge, 1923), pp. 4, 5, 11

    MATH  Google Scholar 

  59. S. Deser, J. Franklin, Am. J. Phys. 73, 261 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. N.V. Johansen, F. Ravndal, Gen. Relativ. Gravit. 38, 537 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. S. Deser, Gen. Relativ. Gravit. 37, 2251 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)

    Google Scholar 

  63. V. Faraoni, Phys. Rev. D 81, 044002 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  64. S. Capozziello, A. Stabile, A. Troisi, Phys. Rev. D 76, 104019 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  65. S. Capozziello, D. Sáez-Gómez, arXiv:1107.0948 (2011)

  66. G.D. Birkhoff, Relativity and Modern Physics (Harvard University Press, Cambridge, 1923), pp. 4, 5, 11

    MATH  Google Scholar 

  67. J.T. Jebsen, Ark. Mat. Ast. Fys. 15(18), 1–9 (1921)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by National Natural Science Foundation of China under Grant Nos. 11075078 and 10675062 and by the project of knowledge Innovation Program (PKIP) of Chinese Academy of Sciences (CAS) under the grant No. KJCX2.YW.W10 through the KITPC where we have initiated this present work. Xin He Meng would also like to thank Prof. Lewis H. Ryder and Prof. Sergei D. Odintsov for helpful discussions, and to dedicate this work to remember one of his teachers once working in Tucson, USA, who has inspired him for exploring the truth, beauty, fairness and justice of this world forever!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Dong.

Appendix

Appendix

Here, we deduce in detail the variation of the action for a simply scalar torsion T with respect to vierbein. Considering the basic relation e α i e β i=δ α β in teleparallel gravity, we can define the algebraic complement C α i of e α i,

(58)
(59)

So we get C α i =ee α i and the variation of metric with respect to e α i

(60)

and

(61)

Redefining the energy–momentum tensor formula of e α i and \(e = \sqrt{-g}\)

(62)

Maybe a more suitable form for this work is

(63)

Differing from that in Einstein’s theory of general relativity, teleparallel gravity uses Weitzenböck connection, defined directly from the vierbein (3) and antisymmetric non-vanishing torsion (4).

Then we can deduce the variation of the torsion tensor with respect to e α i and μ e α i, respectively,

(64)
(65)

and the coupling with \(\tilde{\partial}^{\mu}\varphi\)

(66)

The other two tensors are defined by (6) and (7). Then the torsion scalar as the teleparallel Lagrangian is defined by (8). One needs to pay attention to the S ρ μν being a polynomial combination of the product of g μν and T ρ μν , like

$$ S_\rho{}^{\mu\nu} = \sum g^{a b} \cdot T^{c}{}_{d e}. $$
(67)

The indices a,b,c,d,e of the above definition are dummy indices. After summation of these five dummy indices, only ρ,μ,ν are left. Then we can use a step-by-step method for the binomial formula to deduce the variation of the torsion scalar with respect to e α i and μ e α i, respectively,

(68)

and

(69)

Finally, we can get the variation equation (11) of the action (10) with respect to the vierbein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, H., Wang, Yb. & Meng, Xh. Birkhoff’s theorem in f(T) gravity up to the perturbative order. Eur. Phys. J. C 72, 2201 (2012). https://doi.org/10.1140/epjc/s10052-012-2201-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2201-0

Keywords

Navigation