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Abstract We report on the implementation of a coher-
ent dipole shower algorithm along with an automated im-
plementation for dipole subtraction and for performing
POWHEG- and MC@NLO-type matching to next-to-leading
order (NLO) calculations. Both programs are implemented
as add-on modules to the event generator HERWIG++.
A preliminary tune of parameters to data acquired at LEP,
HERA and Drell-Yan pair production at the Tevatron has
been performed, and we find an overall very good descrip-
tion which is slightly improved by the NLO matching.

1 Introduction

Many physics analyses at the Large Hadron Collider (LHC)
are nowadays based on Monte Carlo simulations [1–5],
e.g. for acceptance determination or even for background
subtraction. With the high precision aimed for in many anal-
yses it is mandatory to provide many of the simulations with
the highest possible theoretical accuracy. For most processes
this is now next-to-leading order (NLO) in the perturbative
expansion of Quantum Chromodynamics (QCD). During
the last decade, enormous progress was made in the devel-
opment of techniques to match NLO calculations on the one
hand and to merge multiple jet tree level matrix elements on
the other hand with parton shower algorithms.

First attempts to improve parton shower emission pat-
terns with the information from the full matrix element for
the hardest gluon emission were made with so-called matrix
element corrections [6, 7], that have long been implemented
in the standard event generators. The next big improvement
was made when matrix elements for multiple hard emissions
were merged with parton shower algorithms, first for e+e−
annihilation processes [8, 9] and then also for hadronic col-
lisions [10]. An alternative approach was proposed in [11],
where different implementations have been systematically
compared as well. The experience that was made with these
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algorithms over the last years [12] has lead to further im-
provements [13, 14] such that now the systematic uncertain-
ties due to e.g. matching scale dependence have been signif-
icantly reduced.

Matching to NLO matrix elements has been initiated
first with a phase space slicing method [15–17]. A more
systematic matching has then been introduced by Frix-
ione and Webber in the MC@NLO approach [18]. This ap-
proach has then been generalised to include massive par-
tons [19]. Many processes have been included in the mean-
time [20–22]. As the algorithm depends on subtraction terms
for a specific parton shower implementation, the first ver-
sions of MC@NLO have been tailored to work with HER-
WIG only. Now, it also works with HERWIG++, i.e. as the
subtraction scheme has been generalised towards the HER-
WIG++ parton shower implementation, all processes avail-
able in the MC@NLO package can also be showered with
HERWIG++ to achieve formal accuracy at NLO [23].

As the matching of NLO matrix elements and parton
shower algorithms takes place perturbatively to the speci-
fied order, i.e. the next-to-leading order, there is formally an
ambiguity left that can be used to devise alternative match-
ing schemes. One such scheme has been proposed by Nason
[24] and now goes under the name POWHEG. The guiding
principle of this algorithm is to allow for a matching algo-
rithm that does not introduce events with negative weight,
as the MC@NLO prescription does. This approach has also
been very successfully established during the last years and
implemented as a separate program package [25]. Many
processes are available in this program package [26–30].
However, the method itself is also used by other groups to
match NLO calculations with parton showers within a given
shower package. Many processes are available with HER-
WIG++ [31–35] or SHERPA [36]. The internal implementa-
tions benefit from the inclusion of truncated showers (see
below).

On the parton shower side, a number of new parton
shower algorithms have been developed during the last
years, partly together with the rewrite of old generators
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[37, 38]. Many new developments have addressed the idea
of implementing a shower that is directly related to the sub-
traction terms commonly used in NLO calculations. This
led to the implementation of parton showers with splitting
kernels based on the Catani–Seymour subtraction scheme
[39, 40] for NLO calculations [41, 42], which was proposed
in [43]. Similar ideas are followed with other subtraction
schemes as e.g. in the VINCIA shower [44] where QCD an-
tenna subtraction terms are facilitated.

With more and more NLO calculations being matched
one-by-one the question arises whether this step can be
automated. In fact, the POWHEG method is already a first
step into this direction, as the method as such is indepen-
dent of the showering algorithm. In particular, no specific
subtraction terms or the like are needed in order to match
a given NLO calculation to any shower. There are subtleties
on the shower side, though. The POWHEG method guaran-
tees to give the hardest emission within the parton evolution
and ensures that this is generated according to the phase
space weighting of the NLO matrix element. However, if
the shower does not evolve in the same hardness measure
as the POWHEG algorithm, one has to introduce so-called
truncated showers. This has been discussed already in early
POWHEG implementations [45] and is now part of HER-
WIG++ [14] and SHERPA [13].

Many NLO calculations are available as ready-to-use
computer codes that often come as packages that include
a number of processes at NLO already. Most of these codes
use the Catani–Seymour subtraction method to regularise
infrared divergences. More recently, also the complete au-
tomation of NLO calculations has been discussed with first
tools readily available [46, 47], based on the approach [48].
Some more calculations are already based on a fully au-
tomated tool chain [49–53]. Part of this progress relies on
the automatic generation of Catani–Seymour subtraction
terms [54–56] or FKS subtraction terms [57]. The latest de-
velopments unify the matching of multiple tree–level emis-
sions and the matching of NLO corrections to the Born level
[58, 59].

In this paper we introduce an implementation of a par-
ton shower based on the Catani–Seymour subtraction terms,
similar to the showers introduced in [41, 42]. The goal of
the implementation is to provide a framework for an auto-
matic matching of NLO computations to a parton shower.
The use of the subtraction terms is highly beneficial as
the MC@NLO like matching, that is based on a subtrac-
tion of the parton shower contribution to the NLO observ-
able becomes trivial. Together with a framework to han-
dle POWHEG like matching we will have the possibility to
check systematics within a single implementation. By us-
ing a shower based framework we may directly make use
of truncated showers in order to minimise systematic uncer-
tainties inherent to the matching formalism. As a first step
in this programme we present the shower implementation,

which is embedded as a module in the HERWIG++ event
generator. In addition we present NLO matchings to the ba-
sic QCD processes.

The paper is organised as follows. In Sect. 2 we introduce
the dipole shower in detail. Section 3 introduces the imple-
mentation of an automatic matching with this parton shower,
that we call MATCHBOX. In Sects. 5, 6 and 7 we present
comparisons to data from LEP, HERA and the Tevatron, re-
spectively. In Sect. 8 we consider the matching of the Z0

plus jet matrix element at NLO which contains less trivial
colour structures as well.

2 Dipole showers

The dipole shower algorithm outlined in [60] has been im-
plemented as an add-on module to HERWIG++, [1]. In this
section we briefly review its properties and give a full de-
scription of the implementation.

The authors have shown that parton showers based on
Catani-Seymour subtraction kernels [39] correctly repro-
duce the Sudakov anomalous dimensions and properly in-
clude effects of soft gluon coherence, upon using an or-
dering of emissions in transverse momenta as defined by
the emitting dipoles. The simple inversion of the kinematic
parametrisation used in the context of NLO subtraction,
however, does not resemble a physical picture for initial
state radiation. An alternative has been suggested and im-
plemented in the simulation presented here.

2.1 Starting the shower

The dipole shower starts evolving off a hard sub process,
which is assigned colour flow information in the large-Nc

limit. This colour flow information is used to first sort all
coloured partons attached to the hard sub process into colour
singlets. Practically, this is done by making use of the fact
that a colour singlet is ‘simply connected’ in the sense of
its colour flow topology: Any parton i in a colour singlet
can be reached from a parton j in the same singlet by just
following colour lines and changing from a colour to an
anti-colour line at an external gluon. Each colour singlet
is now an independently evolving entity, and can only split
into two colour singlets in the presence of a g → qq̄ split-
ting. In the next step, the partons in each singlet are sorted
such that colour connected partons are located at neighbour-
ing positions, when representing the singlet group of par-
tons as a sequence. Note that these sequences may be open
or closed: We will call a sequence open, or non-circular, if
there exists a circular permutation of the elements in it such
that the partons at the first and last position are not colour
connected. Conversely, if there does not exist such a permu-
tation, the sequence is called circular or closed. The possi-
ble sequences are depicted in Fig. 1. Once this sorting has
been accomplished, we will refer to these singlet sequences
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Fig. 1 Examples of parton emission from dipole chains. In these ex-
amples always the upper dipole has been considered for emissions.
Note that any dipole may split in two different ways, splitting either
of its legs. These competing possibilities are not shown in the transi-
tion diagrams

as dipole chains: each pair of subsequent partons in a sin-
glet sequence forms a dipole, which may radiate. For each
parton in each dipole, a hard scale is then determined as de-
fined in [60], with the restriction that no transverse momenta
larger than the ones present in the hard process are gener-
ated by the shower. This restriction can be switched off for
the first emission within the context of NLO matching.

2.2 Kinematics

For completeness we here review the kinematics parame-
trization used for dipole splitting. We referr the reader to
[60] for more details on the relevant phasespace measures.

For final state radiation, we employ a standard Sudakov
parametrization of the splitting products, using the spectator
momentum to absorb the longitudinal recoil of this splitting
such that before and after the splitting all momenta are on
their mass shell, while retaining exact energy-momentum
conservation. The parametrizations for an emission with
momentum q off a final state emitter i and in presence of
a final state spectator j (initial state spectator a) thus take
the form

qi = αipi + βipj,a + k⊥,

q = αpi + βpj,a − k⊥,

qj,a = γpj,a,

(1)

for lightlike pi , pj,a . The spacelike transverse momentum
k⊥ satisfies k⊥ · pi = k⊥ · pj,a = 0 and the other parame-

ters are constrained by q2
i = q2 = 0 and qi + q ± qj,a =

pi ± pj,a .
For initial state radiation it is crucial to allow for non-

zero transverse momenta of the incoming partons, such that
any initial state emission will contribute to the transverse
momentum transferred to the final state. In this case, for
the emission q off an initial state emitter a in presence of
a final state spectator j (initial state spectator b), we use

qa = αapa + βapj,b + k⊥,

q = αpa + βpj,b + k⊥,

qj,b = γpj,b,

(2)

for lightlike pa , pj,b . Similarly to the final state case,
the spacelike transverse momentum k⊥ satisfies k⊥ · pa =
k⊥ · pj,b = 0 and we impose the constraints q2

a = q2 = 0
and qa − q ∓ qj,b = pa ∓ pj,b .

After the shower evolution has been terminated, the event
needs to be re-aligned back to the beam axis, i.e. a Lorentz
transformation needs to be applied transforming the incom-
ing partons with finite transverse momenta back to momenta
collinear with the beam axis. Details of this procedure are
discussed in Sect. 2.5.

2.3 Modification of the splitting kernels

The Catani-Seymour dipole functions are not positive
throughout, rendering a probabilistic interpretation as re-
quired by a parton shower algorithm problematic. The re-
gion where they turn negative is readily identified as the
phasespace for large-angle, hard emission. As the shower
approximation breaks down in this region anyway, one sim-
ple possibility to cure this problem is to set the kernel equal
to zero when it becomes non-positive. For reasons of flexi-
bility and future extensions, we choose a different approach
by adding finite terms to render the dipole functions positive.

There is no first principle of what these finite terms
should look like; indeed, the dipole functions themselfs con-
tain finite, non-singular pieces, which one should abandon
in a strict approach of exponentiating singular terms only.
To this extent, we leave it to a comparison of data and Monte
Carlo, wether exponentiating finite terms should be consid-
ered a bug or a feature. Ultimately, their impact should be
included as a measure of uncertainty of the parton shower
prediction.

To be precise, we have determined the finite terms for
the initial-final and final-initial quark-gluon dipoles to sym-
metrically share the full real emission contribution (aver-
aged over event orientation) of a gluon being emitted off
a space-like quark-current,
〈
V a

qg(x, z)
〉 → 〈

V a
qg(x, z)

〉 + (1 − x)(1 + 3xz),

〈
V

qg
k (x,u)

〉 → 〈V qg
k (x,u) + u

(
1 + 3x(1 − u)

)
.

(3)
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The remaining non-positive dipole function is the final-
initial gluon-gluon dipole, where a less motivated choice has
been used,

〈
V a

gg(x, z)
〉 → 〈

V a
gg(x, z)

〉 + (1 − x)
(
1 + xz(1 − z)

)
(4)

reflecting the z ↔ (1 − z) symmetry of this splitting.
The modification of the dipole kernels have accordingly

been implemented in the automated dipole subtraction to be
discussed in Sect. 3.

2.4 Evolution of the parton ensemble

The main shower algorithm acts on a set of dipole chains,
and proceeds as long as this set is not empty. Dipole chains
are removed from the list, if they stopped evolving, i.e. if
there was no splitting selected with a p2⊥ above the shower’s
infrared cutoff μ2

IR. The first entry in the set of dipole
chains is taken to be the current chain. For each dipole (i, j)

in the current chain (with both possible emitter–spectator as-
signments, i.e. also considering (j, i) along with (i, j)), any
possible splitting (i, j) → (i′, k, j) is considered to com-
pete with all other possible splittings of the chain. For any
such splitting, given a hard scale p2⊥ associated to the emitter
under consideration, a scale q2⊥ is selected with probability
given by the Sudakov form factor

�(i,j)→(i′,k,j)

(
q2⊥,p2⊥

)

= exp

(
−

∫ p2⊥

q2⊥
dq2

∫ z+(q2)

z−(q2)

dzP(i,j)→(i′,k,j)

(
q2, z

))
, (5)

where P(i,j)→(i′,k,j)(q
2, z) is the appropriate splitting prob-

ability as defined in [60], using the respective dipole split-
ting function Vi′,k;j .

The splitting with the largest selected value of q2⊥ is then

chosen to be the one to happen, except the largest q2⊥ turned
out to be below the infrared cutoff. In this case the current
chain is removed from the set of dipole chains, inserted into
the event record and the algorithm proceeds with the next
chain. The momentum fraction z is chosen to be distributed
according to dP(i,j)→(i′,k,j)(q

2⊥, z). Since for now we use
azimuthally averaged splitting kernels, the azimuthal ori-
entation of the transverse momentum is chosen to be dis-
tributed flat. The momenta of the splitting products and
the spectator after emission are then calculated as specified
in [60].

As the evolution factors into dipole chains as indepen-
dently evolving objects, all possible emitters in the chain—
after having inserted the generated splitting—now get
the selected q2⊥ assigned as their hard scale, or stay at
the kinematically allowed scale p2⊥,i,j if q2⊥ > p2⊥,i,j .

If a g → qq̄ splitting has been selected for a circular chain,
this chain becomes non-circular. If it has been selected for

an already non-circular chain, this chain breaks up into two
independent chains exactly between the qq̄-pair, owing to
the colour structure of this splitting. This situation, along
with non-exceptional splittings is depicted in Fig. 1.

2.5 Finishing the shower

After the shower evolution has terminated, the incoming
partons with momenta pa,b in general have non-vanishing
transverse momenta with respect to the beam directions.
This necessitates a realignment of the complete event en-
countered at this stage. Following the arguments of [60],
the momenta of the evolved incoming partons pa,b are taken
to define the frame of the collision at hand, i.e. hadron mo-
menta P̃a,b . We then seek a Lorentz transformation to take
P̃a,b to the externally fixed hadron momenta Pa,b , which is
in turn used to realign the complete event.

To construct the momenta of the incoming hadrons P̃a,b ,
we require the three-momenta of P̃a,b being collinear with
the respective partonic three-momenta and define momen-
tum fractions

xa,b = 2P̃b,a · pa,b

S
. (6)

The momentum fractions are further constrained by requir-
ing that

(P̃a + P̃b)
2 = S, (7)

where S is the centre-of-mass energy squared of the colli-
sion, such that the desired Lorentz transformation exists.

The second constraint is in principle to be chosen in such
a way as to preserve the most relevant kinematic quantity of
the hard process which initiated the showering. By default,
we choose this to be the rapidity of a system X, which is
either the system of non-coloured particles at the hard sub-
process, or the complete final state in case of a pure QCD
hard scattering.

2.6 Cluster hadronization

The cluster hadronization model, originally proposed in [61],
is the hadronization model used by the HERWIG++ event
generator. The model in its initial stage just after par-
ton showering, performs a splitting of gluons into quark-
antiquark pairs such that in the large-Nc limit a set of colour
singlet clusters emerge from the event under consideration.

These clusters are then subsequently converted into
hadrons, by either splitting them into clusters of lower in-
variant mass or performing directly the decay to meson
pairs, in case another qq̄ pair is ‘popped’ from the vac-
uum inside the cluster, or baryon pairs, where the creation
of a diquark-antidiquark pair is assumed. Further details of
the model will not be discussed here.
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The main assumption of the model is however, that both
quarks are located on their constituent mass shell, and glu-
ons are as well assigned a non-vanishing constituent mass,
entering as a parameter of the model. In the standard HER-
WIG++ parton shower, acting as a 1 → 2 cascade, only
scales and momentum fractions of the splittings are de-
termined during the evolution, the full kinematic informa-
tion being constructed after the end of the perturbative
evolution. This setup thus straightforwardly allows to in-
clude the constituent masses in this particular step. Since
the dipole shower preserves momentum conservation locally
to each splitting, ending up with a set of massless partons,
such a treatment is not possible.

The way to perform the ‘reshuffling’ of the massless par-
ton momenta to their constituent mass shells is chosen to be
the following algorithm: Let Qc be the total momentum of
all final state partons and perform a boost Λc to the centre-
of-mass system of Qc, ΛcQc = (Q̂c,0). The boosted parton
momenta pi are now put on the constituent mass shell, in-
cluding a global rescaling of their three-momenta,

pi = (|pi |,pi

) → p′
i =

(√
ξ2|pi |2 + m2

c,i , ξpi

)
. (8)

Momentum conservation then implies the following relation
be satisfied,

Q̂c =
∑

i

√
ξ2|pi |2 + m2

c,i , (9)

which may be solved numerically to yield a value for ξ . Fi-
nally the inverse boost Λ−1

c is applied to the new parton mo-
menta p′

i .

2.7 Comparison to other dipole-type showers

As has been extensively discussed in Ref. [60], one of
the main differences of our implementation as compared to
similar approaches, [41, 42], is the way initial state radiation
is handled. The effect of the alternative scheme, in which
every initial state emission can contribute to the final state
transverse momentum, has been studied at parton level
in [60]. For enabling a consistent subtractive NLO match-
ing (cf. Sect. 4.1), the shower is allowed to fill the available
phase space.1 Additionally, we include a simple modifica-
tion of αs for low scales, such as to allow shower evolution
to very small scales. Algorithms along these lines have been
pointed out as an alternative modelling of intrinsic trans-
verse momentum [62]. For the shower implementation at
hand, this is of particular importance when considering deep
inelastic scattering where no intrinsic p⊥ can be generated
at the end of the evolution without the scattered electron tak-
ing up parts of the resulting recoil.

1A restriction of not generating higher-p⊥ partons than those present
in the hard subprocess is applied if no matching is performed.

3 The matchbox framework

Closely related to the dipole shower implementation, though
technically independent of it, is the development of the
MATCHBOX module. MATCHBOX is based on an extended
version of THEPEG, the extensions providing functional-
ity to perform hard process generation at the level of NLO
QCD accuracy and easing the setup of run time interfaces to
external codes for hard process generation. We have imple-
mented an automated generation of subtraction terms based
on the dipole subtraction formalism [39], based on the infor-
mation available from THEPEG matrix element implemen-
tations, which will be discussed in further detail in Sect. 3.4.
A full NLO calculation to be run in the MATCHBOX frame-
work only requires the implementation of tree-level and one-
loop amplitudes, the presence of colour (and spin) correlated
amplitudes for the Born process and the presence of a phase
space generator appropriate to the process under considera-
tion. Figure 2 sketches the involved software modules and
their interaction with an external implementation of a NLO
calculation.

Besides being capable of performing a Monte Carlo in-
tegration of ‘plain’ NLO corrections, the main purpose of
MATCHBOX is to turn a NLO calculation into a matched cal-
culation to be consistently combined with a parton shower.
Here, functionality is especially provided to calculate the in-
clusive NLO cross section differential in the Born degrees of
freedom, which, along with a matrix element correction to
the shower, is the main ingredient to the POWHEG method
of combining parton showers and NLO QCD corrections.

MATCHBOX is automatically generating matrix ele-
ment corrections from the NLO real emission contribu-
tion. It further allows the possibility to overcome prob-
lems in the POWHEG matching owing to radiation zeroes
in the Born matrix element. The matrix element correction

Fig. 2 A sketch of the interaction of the Matchbox and dipole
shower modules as integrated in HERWIG++. To perform a matched
NLO calculation an external code only has to provide tree-level and
one-loop amplitudes along with colour- and spin-correlated amplitudes
of the Born process and an appropriate phase space generator
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splitting kernel, which is essentially defined by the ratio of
real emission and Born matrix elements squared is turned
into the corresponding distribution including the Sudakov
form factor by using the EXSAMPLE library, [63]. EXSAM-
PLE allows the efficient sampling of distributions of this
type, without having to provide any analytic knowledge on
the splitting kernel or trying to estimate enhancement fac-
tors to simpler functions such as dipole splitting kernels.
EXSAMPLE is also used to sample emissions in the dipole
shower implementation.

3.1 Notation

We consider NLO calculations carried out using the dipole
subtraction method, [39]. Instead of using the notation es-
tablished there, we unify the indices of all possible dipoles
to ease readability, as expressions become quite complicated
especially when considering the POWHEG type matching.
For the subtraction dipoles we choose the notation

Dij,k, Da
ij , Dai

k , Dai,b → Dα, (10)

where the arguments are unified and we make explicit
the dependence on either real emission or ‘tilde’ kinemat-
ics, e.g.

Dij,k(qa, qb;q1, . . . , qn+1) → Dα

(
pα

n (qn+1) | qn+1
)
. (11)

In this notation, pn now refers to the whole phase space
point,

pa, pb; p1, . . . , pn → pn ≡ (p̂a, p̂b; p̂1, . . . , p̂n), (12)

where we have added hat symbols to the momenta to dis-
tinguish a single momentum from a complete phase space
point. The ‘tilde’ mapping and its inverse are denoted by

p̃ij (qi, qj , qk), p̃k(qi, qj , qk) → pα
n (qn+1),

qi,j,k

(
p̃ij , p̃k;p2⊥, z,φ

) → qα
n+1

(
pn;p2⊥, z,φ

)
.

(13)

Differential cross sections are considered in collinear fac-
torisation,

dσX

(
pn | Q,xa, xb,μF

)

= fP←a(xa,μF )fP←b(xb,μF )dσX

(
pn | Q)

dxa dxb,

(14)

where the partonic cross section is in general of the form

dσX

(
pn | Q) = F(p̂a, p̂b)X(pn)dφ

(
pn | Q)

. (15)

Here F(p̂a, p̂b) is the appropriate flux factor and X(pn)

generically denotes any contribution to the cross section
which can be cast in the above form, i.e. tree-level ampli-
tudes squared, one-loop tree-level interferences, subtraction

terms, or the ‘deconvoluted’ finite collinear terms to be dis-
cussed below. The phase space measure dφ(pn | Q) is given
by

dφ
(
pn | Q)

= (2π)dδ

(
n∑

i=1

pi − pa − pb − Q

)
n∏

i=1

dd−1q̂i

(2π)d−12q̂0
i

.

(16)

In latter sections, it will turn out to be useful to rewrite this
as

dσX

(
pn | Q,xa, xb

) = X(pn)dF(xa, p̂a, xb, p̂b)dφ
(
pn | Q)

≡ X(pn)dφF

(
pn | Q,xa, xb

)
, (17)

where we dropped making explicit the factorisation scale de-
pendence from now on.

The finite collinear terms originating from counter terms
to renormalise parton distribution functions and integrated
subtraction terms are reported in [39]. These are given as
convolutions of Born-type cross sections of colour corre-
lated amplitudes with certain ‘insertion operators’, e.g. for
the incoming parton a

∫ 1

0
dz C

(
pa

n(z)
)

dφ
(
pn | Qa(z)

)
dF(xa, zp̂a, xb, p̂b), (18)

where the superscript a along with an argument z indi-
cates, that parton a’s momentum is rescaled by z. The in-
sertion operators themselves include +-distributions, and
events should be generated according to the rescaled in-
coming momentum zp̂a . A numerical implementation is at
first sight not obvious. Considering however the integration
over the momentum fraction xa , these contributions can be
rewritten in terms of a Born-type cross section multiplied by
modified PDFs along the lines of

∫ 1

0
dx

∫ 1

0
dzf (x)B(xz)P (z)

=
∫ 1

0
dxB(x)

∫ 1

x

dz

z
f

(
x

z

)
P(z) (19)

and the +-distributions can be expressed in a way to allow
for numerical implementation. All possible contributions for
light quarks are implemented in MATCHBOX.

Any NLO cross section within the dipole subtraction thus
takes the form

σNLO =
∫ ∣∣MB(pn)

∣∣2
u(pn)dφF

(
pn | Q,xa, xb

)

+
∫ [

2 Re
〈

M∗
B(pn)MV (pn)

〉

+ 〈
MB(pn)

∣∣I
∣∣M(pn)

〉]
ε=0

× u(pn)dφF

(
pn | Q,xa, xb

)
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+
∫ 〈

MB(pn)
∣∣(P̃ + K̃)

∣∣M(pn)
〉

× u(pn)dφ̃F

(
pn | Q,xa, xb

)

+
∫ (∣∣MR(qn+1)

∣∣2
u(qn+1)

−
∑

α

Dα

(
pα

n (qn+1) | qn+1
)
u
(
pα

n (qn+1)
))

× dφF

(
qn+1 | Q,xa, xb

)
, (20)

where the insertion operators I are given in [39] and have
been implemented for light quarks in full generality as well.
P̃, K̃ and dφ̃F denote the deconvoluted versions of the fi-
nite collinear terms originating from the insertion operators
P, K given in [39]. Here, the test functions u(pn) refer to
the class of events to be generated by a Monte Carlo realisa-
tion of the above integrals, and MB,R denote the Born and
real emission amplitudes, respectively. Since only the struc-
ture of the real emission and subtraction terms turns out to be
relevant for matching purposes, we from now on collectively
denote Born, virtual and insertion operator contributions by
∫ ∣∣MBV (pn)

∣∣2
u(pn)dφF

(
pn | Q,xa, xb

)
.

Since all the integrals will be dealt with by means of
Monte Carlo methods, differentials are expressed in terms
of a Jacobian expressing the physical variables in terms of
random numbers and a volume element on the unit hyper-
cube of these random numbers, e.g.

dφ
(
pn | Q) =

∣∣∣∣
∂pn

∂r

∣∣∣∣dkr. (21)

We identify ratios of differentials to actually mean the ratios
of the corresponding functions multiplied by the Jacobian
in use to express them in terms of random numbers, e.g. for
two cross sections we define

dσX(qm | Q)

dσY (pn | Q)
≡ X(qm)

Y (pn)

∣∣ ∂qm

∂rq

∣∣
∣∣ ∂pn

∂rp

∣∣
. (22)

3.2 Phasespace generation and matrix elements

MATCHBOX organizes differential cross sections directly
in terms of the physics quantities entering their definition
to maintain a maximum of flexibility and transparency.
The structure described in the following enables several lev-
els of implementing new processes or interfacing external
codes at runtime, while keeping the already existing steer-
ing of HERWIG++ event generation in terms of subprocess
selection and cuts unaltered.

At leading order, a differential cross section is decom-
posed in terms of PDFs provided through existing infras-
tructure, phasespace generation and a squared matrix ele-
ment for the process of interest. These contributions can be

implemented in one single class. Alternatively, phasespace
generation can be separated into an independent implemen-
tation, while matrix elements squared may still be provided
for each subprocess directly; they can also be decomposed
into helicity amplitudes multiplying a given colour structure.
In the latter case, the relevant colour algebra needs to be
provided through an independent class and amplitudes can
be calculated independently of a given subprocess in a con-
vention that all momenta are outgoing. Other conventions
are possible, requiring information on how a physical sub-
process is crossed to the amplitude’s convention. The case
of providing colour decomposed helicity amplitudes is most
relevant for the fully automatic generation of subtraction
terms to be discussed below.

Another important ingredient to generating events ac-
cording to a given differential cross section is the informa-
tion which (tree-level) Feynman diagrams do contribute to
a given subprocess, and which large-Nc colour flows are as-
sociated to these diagrams. Though the diagram information
is unphysical, it has been included in THEPEG primarily for
the purpose of setting up the event record in a most meaning-
ful way. As for the modularity provided for the contributions
to a differential cross section, diagram information and/or
colour flows can be provided by either direct implementa-
tion,2 or can be generated automatically by a dedicated tree-
level diagram generator based on the vertex objects present
in HERWIG++, and the colour algebra implementation pro-
viding information on which partons are considered colour
connected for a given colour structure. The weights driving
selection of colour flows are then determined automatically.

The diagram information is used by MATCHBOX to de-
termine subtraction terms for real emission contributions to
NLO calculations, and can be used for efficient phasespace
generation. A phasespace generator based on mapping out
the peak structure relevant to the contributing diagrams is
part of MATCHBOX, [65].

At NLO, differential cross sections receive contributions
from subtracted real emission matrix elements, and the finite
remainder of the sum of integrated subtraction terms and vir-
tual corrections. Various conventions of defining this finite
remainder are supported, as well as the choice between di-
mensional regularization and dimensional reduction (includ-
ing conversion from DR to MS renormalized one-loop am-
plitudes). The finite piece of one-loop corrections can, simi-
larly to the implementation of tree-level matrix elements, be
either directly implemented in terms of the Born/one-loop
interference or as colour decomposed helicity amplitudes.
The contributions from integrated subtraction dipoles be-
have similar to the Born contribution as discussed in the pre-
vious section, with the exception that colour correlated ma-

2A dedicated code is available to convert diagrams generated by
QGRAF to code required by the MATCHBOX infrastructure [64].
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trix elements are required, which will be discussed in the
following.

3.3 Handling of colour bases

Any QCD amplitude |M〉, considered here a vector in colour
space with spin quantum numbers implicit, can be decom-
posed in terms of a finite set of colour structures |α〉 as

|M〉 =
∑

α

Mα|α〉. (23)

For a given choice of a colour basis {|α〉} it is instructive to
consider the equivalent object of a plain complex vector,

|M〉 ↔ M ≡ (M1, . . . , Mdc ) (24)

for a colour basis of dimension dc. Within this approach,
and owing to the fact that the most common choice of
colour bases are not orthogonal (with the notable excep-
tion of [66]), calculating a squared matrix element or sim-
ilarly a Born/one-loop interference thus requires knowledge
of a scalar product matrix Sαβ = 〈α|β〉, in terms of which
a colour-summed, squared matrix element is calculated as
|M|2 = M†SM.

Similarly, colour correlated matrix elements can be ex-
pressed as

〈M|Ti · Tj |M〉 = M†T
†
i S̃Tj M, (25)

where S̃ is the scalar product matrix for a final state with an
additional parton and the Ti are appropriate representations
of the colour charge operators. A more detailed description
of this paradigm is given in [67]. Within this context, we are
mainly concerned with the fact that this treatment is blind
to a particular choice of basis, and linear algebra otherwise
which is performed with help of the linear algebra package
of BOOST. Based on this fact, MATCHBOX provides a very
generic notion of a colour basis, implementing precisely this
picture and requiring from a particular choice of colour ba-
sis solely the calculation of scalar products between colour
structures, as well as the matrix elements of the Ti .

3.4 Automated dipole subtraction

MATCHBOX provides an automated generation of subtrac-
tion terms according to the dipole subtraction formalism
[39]. Similar implementations exist in other event gen-
erators, [54, 68, 69]. The MATCHBOX implementation is
smoothly integrated with the hard process generation frame-
work of THEPEG, and offers modified subtraction terms
to match the evolution kernels used in the dipole shower,
cf. Sect. 2.3. All dipole kernels and insertion operators for
massless quarks have been implemented, and the framework
is general enough to straightforwardly include the contribu-
tions relevant for massive quarks, parts of which are already
present [70].

The process dependent ingredients needed to set up sub-
traction terms, in particular colour- and spin-correlated ma-
trix elements, can either be provided directly through a gen-
eral set of interfaces, or methods providing colour-ordered
subamplitudes may be implemented. In the latter case,
the infrastructure outlined above is employed to evaluate
colour correlations and spin correlations by means of trans-
lating the correlation tensors used in [39] to a correlation of
amplitudes of different gluon helicity.

Which dipoles will contribute to a given process is deter-
mined from the diagram information discussed in Sect. 3.2.
Subtraction dipoles are determined by a simple algorithm of
checking, for any contributing diagram, if any two external
coloured legs are attached to the same vertex. By remov-
ing this vertex from the diagram information, the diagram
of the corresponding ‘underlying Born process’ is obtained
along with a mapping of how the parton momenta need to
be assigned to the underlying Born process. Conversely,
the same pairing of diagrams provides a way to identify
which real emission processes are to be considered given
any Born process. This information is used when setting
up the inclusive NLO cross section calculation and generat-
ing matrix element corrections for the parton shower. From
a given matrix element object implementing a real emission
contribution, MATCHBOX checks a set of Born matrix ele-
ment objects provided along with the real emission ones for
the underlying Born processes obtained and adds all match-
ing pairs to the calculation if there exists a subtraction dipole
object which claims responsibility for the given pairing.
Similarly, all insertion operator implementations present are
checked if they claim responsibility for a given Born pro-
cess, thus completing the setup of a NLO calculation.

3.5 Summary of fixed-order cross sections

Fixed-order cross sections at LO or NLO can be assembled
with MATCHBOX through a series of interfaces at different
levels such as (colour and/or spin correlated) squared ma-
trix elements and Born-virtual interferences, or directly at
the level of colour ordered helicity amplitudes. If the tree
level contributions are available via the amplitude level in-
terface, subtraction terms are setup in a completely auto-
matic way requiring no user intervention or additional in-
formation. Hybrids of these interfaces are as well possible,
allowing e.g. one-loop corrections to be provided at the level
of the Born-virtual interference, while real emission matrix
elements are given at the amplitude level.

Given a physical process determined by incoming had-
rons or leptons, and a final state which can explicitly con-
tain jets, all contributing subprocesses are determined and
diagram information is generated for use in phase space gen-
eration and the setup of subtraction terms. The complete LO
or NLO calculation is then injected as a THEPEG SubPro-
cessHandler object into the stage of event generation.
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For running unmatched calculations, a group of events
consisting of real emission and ‘tilde’ phase space points
is provided along with the relative weights of the individ-
ual contributions present in the group. The sum of these
weights, i.e. real emission minus subtraction term contribu-
tions is driving the cross section integration and potentially
event unweighting.

More details on the MATCHBOX framework, particularly
the interfacing and/or implementation of contributions to
a fixed-order cross section are given in Appendix A.

4 NLO matching with matchbox

4.1 Subtractive NLO matching

Owing to the fact that the dipole shower implementation
uses splitting kernels which precisely equal the dipole sub-
traction terms, following the steps leading to MC@NLO here
results in a very simple matching.3 This subtractive match-
ing is basically identical to the NLO calculation itself, ex-
cept that instead of event groups now a single real emission
phase space point is generated from the subtracted real emis-
sion contribution. In an algorithmic manner, the matching
may thus be expressed very simply:

– Generate Born-type events pn with density
∣∣MBV (pn)

∣∣2 dφF

(
pn | Q,xa, xb

)
, (26)

– generate real-emission type events qn+1 with density
(∣∣MR(qn+1)

∣∣2 −
∑

α

Dα

(
pα

n (qn+1) | qn+1
))

× dφF

(
qn+1 | Q,xa, xb

)
, (27)

– and feed either into the dipole shower.

A subtlety, however, arises here. Since we are interested
in describing the hardest emission according to the exact
real emission matrix element, the parton shower should not
generate harder emissions than the one fixed from the NLO
calculation. Practically, this is implemented by calculating
the pα⊥ as defined by the inverse ‘tilde’ mapping from each
dipole configuration α, since the kinematics of the emission
appears differently depending on the emitting dipole con-
sidered. pα⊥ is communicated as a veto scale to the dipole
shower, which is not allowed to generate emissions with
p⊥ > pα⊥ off the emitter, emission and spectator partons
used to evaluate Dα . Another approach, in which the dipole
shower is generally not allowed to emit at scales p⊥ larger
than final state transverse momenta can equivalently be used

3Though the kinematic parametrisation differs from the one used
in the subtraction context, it can be related to the usual ‘tilde’
parametrisation by a boost in case a single emission is considered.

and may become the default in a future version. This treat-
ment is then very similar to the HERWIG shower in use with
the traditional MC@NLO implementation.

4.2 NLO matching with matrix element corrections

The splitting kernels to be used for a matrix element correc-
tion are given by the ratio of real emission and Born ma-
trix elements squared, weighted by (in principle) arbitrary
weight functions for each kinematic mapping of a subtrac-
tion term, i.e. for each subtraction term. It is most simple
to choose the subtraction terms themselves to define these
weight functions. This has the advantage that all divergences
but the divergence associated to the subtraction term Dα are
divided out from the real emission matrix element, and dy-
namical features of the Born matrix element, like peaks ow-
ing to unstable particles, are flattened out in the splitting ker-
nel considered.

Within this procedure, one faces three major problems:

– Some of the subtraction dipoles, in particular the ones
with initial state emitter and final state spectator or vice
versa, are not positive-definite. This makes a Monte Carlo
treatment of the corresponding Sudakov-type distribution
hard to implement. Since the regions, where these dipole
kernels become negative correspond to hard, large an-
gle parton emission, it is clear that this problem can be
cured by changing the irrelevant finite terms of the sub-
traction dipoles, provided they are consistently taken into
account in the integrated ones. Within the MATCHBOX

implementation this has so far been carried out for the qq

initial-final dipoles, which have been modified to repro-
duce the matrix element squared for gluon emission off
the corresponding vector current and are thus positive by
definition.

– The Born matrix element squared may contain zeroes.
In this case, its inverse is obviously ill-defined.

– The implementation of the parton densities at hand, which
enter as a ratio in the splitting kernels as well, may not be
stable in particular for large x in the sense that the inter-
polation used oscillates around zero rather than tending
to zero smoothly. This poses a problem similar to the ze-
roes in the Born matrix element, however now without
any physical interpretation.

The latter two problems can be solved by introducing
an auxiliary cross section dσscreen(pn | Q;p2⊥) which enters
into the definition of the splitting kernels

dPα

(
p2⊥, z,φ | pn

)

= d3r
Dα(pn | qα

n+1)
∑

β Dβ(p
β
n (qα

n+1) | qα
n+1)

× dσR(qα
n+1 | Q,x′

a, x
′
b)

dσB

(
pn | Q,xa, xb

) + dσscreen,α(pn | Q;p2⊥)
, (28)
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where we have already written the splitting kernel differ-
ential in the random numbers determining p2⊥, z and φ,
and the dependence of qα

n+1 = qα
n+1(pn;p2⊥, z,φ) on the

splitting variables is understood implicitly. In order not to
change the divergence structure implying the resummation
of large logarithms, the screening cross section needs to van-
ish as p2⊥ → 0. Since Born zeroes cannot occur for p2⊥ → 0
(the QCD singularities factor in this limit with respect to
the Born process) Eq. (28) is free of these problems. If,
in addition, the screening cross section does not depend on
the parton distributions, the technical issues with PDFs be-
coming zero are cured as well.

The screening cross section has however to be taken into
account for the fixed order calculation in order to repro-
duce the correct NLO cross section and will thereby spoil
the original simplicity of using the NLO K-factor differen-
tial in the Born variables to generate events to enter the ma-
trix element corrected shower. Including the screening cross
section the fixed order cross section can then be calculated
to be constructed of densities for Born-type and real emis-
sion type events. The densities for Born-type events closely
resemble the K-factor modification,

dσinclusive
(
pn | Q,xa, xb

)

= dσBV

(
pn | Q,xa, xb

)

+
∫

d3r
dσR,inclusive(pn | Q,xa, xb)

d3r
, (29)

where

dσR,inclusive(pn | Q,xa, xb)

dkrB d3r

= dσB(pn | Q)

dkrB

×
∑

α

Dα(pn | qα
n+1)

∑
β Dβ(p

β
n (qα

n+1) | qα
n+1)

R
(
pn | qα

n+1

)
, (30)

and

R
(
pn | qα

n+1

)

= −dφF (qα
n+1 | Q,x′

a, x
′
b)

dφ(pn | Q)

+ dσR(qα
n+1 | Q,x′

a, x
′
b)

dσB(pn | Q,xa, xb) + dσscreen,α(pn | Q;p2⊥)
. (31)

To generate events according to these densities, a k + 3-di-
mensional random number point is chosen, where the three
additional degrees of freedom are discarded. Owing to
the fact that the integration volume in terms of random num-
bers is the unit hypercube, this procedure produces the in-
tegration over the degrees of freedom of the parton emitted
in the real emission on average.

Events of real emission type are to be generated with den-
sity

dσR

(
qn+1 | Q,xa, xb

)

×
∑

α

R̄
(
pα

n | qn+1
) Dα(pα

n | qn+1)
∑

β Dβ(p
β
n | qn+1)

, (32)

R̄
(
pα

n | qn+1
)

= dσscreen,α(pα
n | Q;p2⊥)

dσB(pα
n | Q,x′

a, x
′
b) + dσscreen,α(pα

n | Q;p2⊥)
, (33)

which is just a reweighting of the real emission contri-
bution. Events of both classes can then be showered by
a parton shower using a matrix element correction as de-
fined at the beginning of this section, and a communica-
tion of veto scales applies to the real emission contribu-
tion along the same lines as for the subtractive matching.
Note that the individual contributions are positive, as long as
the screening cross section is bounded from above by a rea-
sonable value.

Since this type of matching is independent of the parton
shower to act downstream, the actual implementation does
not make any reference to the dipole parton shower, and real
emission contributions according to the matrix element cor-
rection are generated outside any shower module, presenting
a real emission sub process supplemented with proper veto
scales, or a Born-type sub process to the shower, if radiation
has been generated according to the matrix element correc-
tion or not, respectively.

Note that, when putting the screening cross section to
zero, the original simplicity of the POWHEG-type matching
is recovered. The matrix element corrections, inclusive and
real-emission type contributions are all setup and calculated
in an automated way within the MATCHBOX implementa-
tion. The screening cross section is by default chosen from
the corresponding phase space and the dimensionality re-
quired by the phase space, i.e.

dσscreen,α

(
pα

n (qn+1) | Q;p2⊥
) = (pα⊥)2

sα(qn+1)

dφ(qn+1 | Q)

(sα(qn+1))nout
,

(34)

where pα⊥ is the transverse momentum associated to the
mapping pα

n (qn+1), sα(qn+1) is the appropriate mass squared
of the emitter-spectator pair in pα

n , and nout is the number of
outgoing particles. Other choices may be possible.

5 Results at LEP

The variety of data acquired by the LEP experiments allow
for a systematic fit of parameters of the parton shower and
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Table 1 The parameters varied
for the fit to LEP data Parameter Range Description

αs(M
2
Z) 0.1–0.13 Input αs at Z mass.

μIR,FF 0.5 GeV–2.0 GeV Infrared cutoff for final-final dipoles

μsoft,FF 0.0 GeV–1.2 GeV Soft scale for final-final dipoles

mg,c 0.67 GeV–3.0 GeV Gluon constituent mass

Clmax 0.5 GeV–10 GeV Maximum cluster mass

Clpow 0.0–10.0 Cluster mass exponent

Clsmr 0.0–10.0 Cluster direction smearing

Psplit 0.0–1.4 Cluster mass splitting parameter

Table 2 Parameters for LO and
NLO fits to LEP data

aThis parameter was predicted
negative by PROFESSOR though
consistent with zero and has
thus been fixed

Parameter Range Description

αs(M
2
Z) 0.113185 ± 0.007281 0.117550 ± 0.005053

μIR,FF (1.416023 ± 0.306430) GeV (1.245196 ± 0.226821) GeV

μsoft,FF (0.242725 ± 0.202069) GeV 0.0 GeVa

mg,c (1.080386 ± 0.499546) GeV (1.007680 ± 0.265565) GeV

Clmax (4.170320 ± 0.589504) GeV (3.664004 ± 0.639504) GeV

Clpow 5.734681 ± 1.006965 5.687022 ± 0.869322

Clsmr 4.548755 ± 2.350193 3.115744 ± 2.436793

Psplit 0.765173 ± 0.074008 0.771329 ± 0.074248

the hadronization model. In a preliminary fit, the parame-
ters assumed to mainly determine the description of event
shape variables and jet rates as measured by the DELPHI ex-
periment [71] and jet observables as reported by the OPAL
collaboration [72] have been fitted using the RIVET [73]
and PROFESSOR [74] systems. The parameters and ranges
considered are given in Table 1, along with a short descrip-
tion. Parameters which are known to mainly affect individ-
ual hadron multiplicities have not been varied, and fragmen-
tation parameters for heavy quarks have been set equal to
the values of those for light quarks. A simple modification
of the running of αs in the infrared has been adopted by re-
placing its argument q2 → q2 +μ2

soft. This modification has
originally been motivated to supply another model for in-
trinsic transverse momentum generation by letting the initial
state shower evolve down to very small scales along the lines
of [62]. We see however no reason that it should not be con-
sidered for final state radiation as well.

Separate fits have been performed for LO and NLO pre-
dictions. LO predictions have been obtained by running
just the parton shower, using a one-loop running αs . NLO
prediction have been obtained by means of supplementing
the shower with the matrix element correction matching
without using the Born screening cross section and a two-
loop running αs . In total we find that the NLO simulation
gives a marginally better fit than the LO one, though the de-
scription of data is completely comparable within experi-
mental uncertainties.

The fitted parameter values are displayed in Table 2.
Most notably, the hadronization parameters for the LO and

NLO fit do not significantly differ. For both predictions,
a modification of the infrared running of αs seems not to
be preferred. The infrared cutoff of the parton shower is
determined more precisely by the NLO fit, which prefers
a smaller cutoff. Also αs(M

2
Z) is determined more precisely

by the NLO fit. Both αs values obtained are compatible with
the world average [75] of 0.1184, where the NLO result is
closer to this value. Note that this should be regarded a coin-
cidence at the level of the approximation considered and it is
certainly not possible to uniquely relate the obtained value to
one applying to the MS scheme. In Figs. 3 and 4 the LO and
NLO simulation results are compared for selected observ-
ables. Figure 5 shows the energy-energy-correlation, which
has not been included in the fit.

5.1 Comparison of matching strategies

The MATCHBOX framework provides the facility to switch
between the POWHEG-type matching with matrix element
corrections including or excluding the auxiliary Born screen-
ing cross section, and subtractive matching. For reasons of
systematics it is instructive to compare these approaches. No
separate fit for the variants not considered so far has been
performed and the NLO fit values as given in the previous
section have been used. The different matching strategies
give completely comparable results. If there are small visi-
ble differences, there is no clear tendency that either variant
would give a better description than any of the others. Fig-
ure 6 compares the matching strategies for the two jet rate.
To this extent, the subtractive matching could be preferred
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Fig. 3 Some event shape variables as predicted by the leading order
and next-to-leading order simulations. Here, we additionally compare
to the standard HERWIG++ shower (version 2.5.1 with default set-
tings), showing that the dipole shower gives a significantly improved
description already at leading order

Fig. 4 The differential three jet rate as predicted by the leading order
and next-to-leading order simulations

Fig. 5 Energy-energy correlation. Note that this observable has not
been included in the fit

amongst the POWHEG-type ones owing to its smaller com-
putational complexity. This statement, however, not only in-
cludes that negative weighted events do not pose a major
problem, but also has to be verified in a process dependent
matter since there is no hint, if the behaviour observed here
is a general feature—particularly at hadron colliders.

6 Results at HERA

Owing to the approximation underlying the dipole parton
shower, diagrams contributing to parton emission of a given



Eur. Phys. J. C (2012) 72:2187 Page 13 of 19

Table 3 Parameters for LO and
NLO fits to HERA data Parameter Range Description

μIR,FI (0.796205 ± 0.333340) GeV (0.718418 ± 0.210448) GeV

μsoft,FI (1.355894 ± 0.432515) GeV (1.003714 ± 0.252398) GeV

Fig. 6 Comparison of matching strategies exemplified for the Durham
two-jet rate

dipole (i, j) may be considered a gauge invariant subset
in the soft and/or collinear limits for Nc → ∞. This implies
that the infrared cutoffs and soft scales entering the emis-
sion probabilities need not be the same for all dipoles.
The emitter-spectator configurations forming gauge invari-
ant quantities in this sense are the two emitter choices for
final-final dipoles, initial-initial dipoles, and the combina-
tion of initial-final and final-initial configurations. Fitting
DIS data therefore allows one to fix the infrared cutoff and
soft scale for the latter, before finally constraining the same
parameters for initial-initial dipoles at a hadron collider,
which is considered in the next section.

For the fit described here, the same technique as for
LEP, and data accumulated by the H1 experiment [76] have
been used. For LO and NLO, the default HERWIG++ PDFs,
MSTW 2008 LO** [77, 78] and MRST 2002 NLO [79],
have been used. The same PDFs were considered for hadron
collider data to be discussed in the next section. The NLO fit
was obtained by running the matching with matrix element
correction.

The findings are similar as for the fit to LEP data. We
find a reasonable prediction of transverse energy flows over
the whole range of (x,Q2) plane. The matched NLO pre-
diction gives a comparable fit to the LO simulation, while
preferring both a smaller infrared cutoff and screening scale.
The fitted parameters are given in Table 3.

Fig. 7 Average transverse energy in the central region as measured at
HERA and compared to leading order and next-to-leading order pre-
dictions

Figure 7 shows the average transverse energy as a func-
tion of Q2 in the central detector region. This observable is
clearly improved by the NLO matching at small momentum
transfers. A more detailed analysis of DIS data including in-
clusive jet and event shape data is currently underway.

7 Results at the Tevatron

After having determined the simulation parameters for
hadronization, final state radiation, and radiation off a final-
initial dipole by fitting LEP and HERA data, two parameters
remain to be determined: the infrared cutoff and soft scale
for radiation off an initial-initial dipole. We here consider
the p⊥ spectrum of e+e− Drell-Yan pair production as mea-
sured by the CDF collaboration [80]. Since the Drell-Yan
process receives rather large QCD corrections from leading
to next-to-leading order and a still considerable correction
at NNLO, both fits have been performed by normalising
the simulation to the measured cross section. The matrix el-
ement matching including the Born screening cross section
has been used here, as for the DIS data.

The PROFESSOR algorithm here turned out not to be ap-
plicable, as the cubic interpolation was not capable of de-
scribing the complete dynamics of letting the shower evolve
to rather small infrared cutoffs, owing to the prescription of
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Table 4 Parameters for LO and NLO fits to the CDF Drell-Yan data

Parameter Range Description

μIR,II 0.367359 GeV 0.275894 GeV

μsoft,II 0.205854 GeV 0.254028 GeV

Λ⊥,valence 1.68463 GeV 1.26905 GeV

Λ⊥,sea 1.29001 GeV 1.1613 GeV

Fig. 8 Differential cross section of the Drell-Yan-pair p⊥ compared
to LO and NLO predictions. Note that the cross sections have been
normalised to the measured one

introducing a soft scale in αs as already described before.
We have therefore performed a preliminary fit by generat-
ing 300 random points uniformly in parameter space, which
here includes the infrared cutoff for initial-initial dipoles,
the soft scale for initial-initial dipoles, as well as the widths
of a Gaussian distribution for intrinsic transverse momen-
tum, Λ⊥. The latter has been chosen to be potentially differ-
ent for valence and sea partons.

Out of these random points we have picked the one with
lowest χ2 with respect to the data, again both for LO and
NLO simulations. The resulting parameters are given in Ta-
ble 4. Note that the p⊥ distribution for sea partons is nar-
rower, corresponding to a broader spatial distribution as can
be motivated on different grounds.

We show the comparison of LO and NLO simulations
in Fig. 8 showing similar systematics to the distributions
discussed before. In order to determine the predictivity of
the simulation already at this very coarse level of tuning, we
additionally show the pseudo-rapidity distribution of a third
jet in events with at least two hard jets, Fig. 9, as carried out
at CDF [81]. Reasonable agreement with data is found. On

Fig. 9 The pseudo-rapidity distribution of a third jet in events with at
least two jets. We here only show the leading order prediction in order
to check the predictivity of the tune carried out so far

top of the work presented in [60], this constitutes another
crucial test of coherent parton evolution.

8 Z0 + jets

In addition to the processes discussed so far we have in-
cluded the simulation of Z0/γ ∗ production in association
with a single hard jet at NLO. Matching of this process has
been discussed in the literature in both, the POWHEG and
the subtraction method [36, 82, 83].

As in the previous examples, the matrix element has been
calculated and was included in the MATCHBOX framework
as a built–in process. This time, however, the process was
included on the amplitude level, providing spin– and colour
correlated matrix elements automatically. The generic build-
ing blocks needed to test our framework are just three ampli-
tudes, implemented as complex functions, the Born, the vir-
tual (one-loop) and the real emission amplitude. The imple-
mentation and integration of the NLO amplitude at parton
level has been validated against MCFM4 on the level of dis-
tributions and integrated cross section. In addition, the Born
amplitude was validated against the internal matrix element
in HERWIG. All tests have been carried out at the example
process pp → e+e−j . Different final states are only triv-
ial modifications of the matrix elements and are available
in the code via simple switches.

Regarding our framework, compared to the previously
discussed examples, this is the first test of the match-

4http://mcfm.fnal.gov.

http://mcfm.fnal.gov
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Fig. 10 Exclusive multiplicity of jets with p⊥ > 20 GeV

ing machinery on the amplitude level and with non-trivial
spin and colour correlations. Furthermore, with this process
almost all of the possible emitter spectator combinations
are included in order to test the automatic setup of Catani–
Seymour subtraction terms, including splittings that involve
the triple gluon coupling.

In order to study the effect of the NLO corrections, we
have studied a number of observables for different setups of
our code at parton level, namely

– LO + PS, LO with parton showers,
– NLO, NLO without parton showers, and
– NLO + PS, NLO with parton showers using matrix ele-

ment corrections.

We consider the invariant mass of the Z0/γ ∗ boson via
the electron pair in a mass window of 65 GeV < Mee <

115 GeV. In addition we ask for at least one jet with p⊥ >

20 GeV in the pseudorapidity range 0 < |η| < 5. Jets are
clustered with the kT algorithm (R = 0.7).

In Fig. 10 we show the exclusive jet multiplicity for all
the setups mentioned above. Clearly, the NLO calculation
can only have up to two jets, while additional jets are pro-
duced by the parton shower. As the NLO+PS setup already
start from harder configurations, here also the jet multiplic-
ity increases towards more realistic values as compared to
the LO+PS simulation.

The transverse momentum of the Z0 boson is shown up
to very large values in Fig. 11 as a check. This observable is
described well by the LO matrix element already, which is
not affected by parton showering in the region of high trans-
verse momenta. At NLO only a small correction is applied
in the normalization; similarly to the LO setup, the NLO be-
haviour is preserved by the matched simulation.

The azimuthal angle difference �φ12 between the first
and the second jet is displayed in Fig. 12. This observable is
strictly leading order for the NLO matrix elements while the
LO+PS setup only gets a second jet from the parton shower
alone. Population at small values results from very soft and

Fig. 11 Transverse momentum of the Z0 boson for large transverse
momenta

Fig. 12 Azimuthal angle �φ between the hardest and second hardest
jet

collinear emissions as given correctly by the parton shower
evolution while large values towards π arise in events with
widely separated jets as only generated by the hard ma-
trix element. Here is the domain of the NLO calculation.
A simulation that incorporates a matching between parton
shower and NLO calculation is hence expected to interpolate
smoothly between these two domains, following the parton
shower on the left side of the plot and the NLO calculation
on the right.

The transverse momenta of the hardest and second hard-
est jet are shown in Fig. 13. The behaviour of the hardest jet
is similar as for the transverse momentum of the Z0 boson.
The second jet, however, is only covered by the real correc-
tion part of the NLO matrix elements. Hence, the LO+PS
result is too soft, the parton shower is not hard enough to
produce as many hard second jets as given by the matrix
elements.

9 Conclusions and outlook

We have introduced a new dipole shower module for
the event generator HERWIG++ that allows for an auto-
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Fig. 13 Transverse momenta of the hardest (upper panel) and second
hardest jet

matic matching of NLO computations with a parton shower.
A tune of the hadronization module to the most impor-
tant data sets show that we can achieve very good results
from this simulation already without the inclusion of NLO
terms. Including NLO corrections at this relatively simple
level only marginally improves the results. This effect is
expected as it is known that the Catani–Seymour showers
tend to mimic the behaviour of NLO matrix elements very
well also in phase space regions well outside the collinear
limits. However, the matching poses no technical problem
and can be seen as a proof-of-concept for the idea to pro-
vide a framework for automatic matching. At this time with
relatively simple matrix elements at NLO that are provided
by internal code. Future work will concentrate in the inclu-
sion of external code via a well defined interface, following
the ideas in [84].
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Note added in proof During the editorial process of this work an-
other preprint, [83], appeared, studying in detail the systematics of

NLO matching in a setting similar to ours, though for more compli-
cated processes. While the present work focusses on presenting sim-
ple processes as proof of concept and thus refrains from giving an in-
depth analysis of NLO matching, work is in progress towards processes
involving several coloured partons. The MATCHBOX implementation
particularly aims at an assesment of matching systematics and provides
all tools needed for exploring established or newly developed matching
schemes, details of which we leave to future work.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

Appendix A: Matchbox code structure and interfaces

In this appendix, we give a brief overview of MATCHBOX’s
code structure and the interfaces available tom implement
fixed-order matrix elements.

One of the major design criteria of MATCHBOX has been
to retain the steering of hard matrix elements as already
present in THEPEG/HERWIG++, while allowing for flexible
input of new processes. This structure is reflected in Fig. 14.

Table 5 gives an overview of what contributions to
a fixed-order calculation are provided by MATCHBOX

and/or may be provided by an external code.

Appendix B: Code validation

B.1 Shower splitting kernels

The sampling of shower splitting kernels has been explic-
itly verified in situ, meaning using the full implementa-
tion as present in the simulation code, against an indepen-
dent implementation using a numerical integration to ob-
tain the Sudakov-type distributions. Figure 15 shows an ex-
ample for a final-final splitting kernel, proving correctness
of this part of the code.

B.2 NLO QCD corrections

All leading order matrix elements implemented in the
MATCHBOX framework have been cross-checked against
the HERWIG++ matrix elements.

The functionality of the automatically generated subtrac-
tion terms has been verified. Figure 16 shows a typical ex-
amples of the ratio of subtraction to real emission cross sec-
tion, plotted against each of the invariants entering the prop-
agator denominators.

The ‘plain’ NLO cross section, and the inclusive one en-
tering the matching with matrix element correction have
been checked to agree, with and without the usage of
the Born ‘screening’ cross section. The NLO cross section
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Fig. 14 Overview of the MATCHBOX class hierarchy used to as-
semble leading or next-to-leading order calculations. This diagram
also reflects one of the main design criteria of the framework, re-
taining the steering of hard subprocess generation as already pro-
vided in THEPEG/HERWIG++ (top row; classes used by THEPEG
for the hard process generation), while allowing full flexibility of im-
plementing new processes or interfacing existing codes (bottom row).
Solid lines with open arrows indicate inheritance; solid lines with black

(open) diamonds indicate aggregation of at least one (one or more) ob-
jects. The dashed lines indicate the workflow implemented in the
MatchboxFactory class to assemble a full calculation from the individ-
ual contributions. The Tree2toNGenerator class determines tree-level
diagrams contributing to a particular subprocess, while MatchboxS-
caleChoice allows for a flexible choice of renormalization and factor-
ization scales. The other classes are discussed in detail in Table 5

Table 5 Overview of some of the MATCHBOX classes providing con-
tributions to fixed-order calculations. The last two columns indicate, if
the corresponding contribution is delivered by MATCHBOX (Int), needs
to be input from an external code (Ext), or if both variants are possible.
A superscript C denotes a calculation of an amplitude with all mo-
menta outgoing, from which MATCHBOX determines the crossings to
any physical subprocess required. The operator C includes colour and
potentially spin correlations

Class Physical object Int Ext

MatchboxPhasespace |∂φ/∂r| × ×
ColourBasis |α〉 × ×
MatchboxAmplitude MC

B,V,R – ×
|MC

B,R |2 ×† ×
2 Re((MC

B)∗MC
V ) ×† ×

〈MC
B |C|MC

B〉 ×† ×
SubtractionDipole Dα × –

MatchboxInsertionOperator I, P + K × –

MatchboxMEBase dσB,V,R × ×∗

MatchboxNLOME dσBV × –

SubtractedME dσR − dσA × –

∗If diagram information is provided
†If amplitude information is provided

for e+e− → jets has been validated against the analytically
known K-factor of 1 + αs/π . The NLO cross section for
DIS and Drell-Yan has been checked against the existing

Fig. 15 Example comparison of sampled final-final splitting momen-
tum fraction (blue lines) versus results from a numerical integration
(turquoise lines) at two different dipole masses, sij = (100 GeV)2

(continuous lines) and sij = (50 GeV)2 (broken lines) (Color figure
online)

POWHEG implementation in HERWIG++. For deep inelastic
scattering, the subtraction terms have been modified in order
to have positive definite dipole kernels, finite terms of the in-
tegrated subtraction terms have been changed accordingly.
The functionality of the subtraction has been checked with
both variants, and the NLO cross sections with and without
modifications are found to agree.
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Fig. 16 Envelopes of the ratio of the subtraction to the real emission
cross section versus the propagator denominator for all singular con-
figurations in Z + jet production

B.3 NLO matching with matrix element corrections

A non-trivial cross check of the matrix element correction
code and EXSAMPLE as the underlying ‘working horse’,
is to consider the spectra for a gluon emission off a qq̄

dipole as generated by the shower, which is validated against
a numerical integration of the expected distribution im-
plemented in a completely independent code. By putting
the real emission matrix element entering the matching to
be equal to the sum of dipoles (the correctness of which has
been checked by verifying that the cross section of the sub-
tracted real emission matrix element is consistent with zero),
the matrix element correction must produce the same spec-

trum as the shower code. We have checked that this is in-
deed the case. It should be stressed that the machinery un-
derlying the setup of the matrix element correction is much
more complex than the shower implementation, and, that
the splitting kernel entering the matrix element correction
does depend on more parameters5 than the one parameter
of the shower kernel (corresponding to the dipole invariant
mass).
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