Skip to main content
Log in

Quark condensate for various heavy flavors

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The quark condensate is calculated within the world-line effective-action formalism, by using for the Wilson loop an ansatz provided by the stochastic vacuum model. Starting with the relation between the quark and the gluon condensates in the heavy-quark limit, we diminish the current quark mass down to the value of the inverse vacuum correlation length, finding in this way a 64 % decrease in the absolute value of the quark condensate. In particular, we find that the conventional formula for the heavy-quark condensate cannot be applied to the c-quark, and that the corrections to this formula can reach 23 % even in the case of the b-quark. We also demonstrate that, for an exponential parametrization of the two-point correlation function of gluonic field strengths, the quark condensate does not depend on the non-confining non-perturbative interactions of the stochastic background Yang–Mills fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For reviews see [6, 7]

  2. For a review see [10]

  3. For the bosonic case see [12].

  4. The latter formula can be proved by rewriting the double surface integral as

    applying the Stokes’ theorem, which leads to

    and noticing that only the (zz′)-term in (zz′)2 yields a non-vanishing contribution to the last integral, so that

  5. Rigorously speaking, the correlation functions 〈B μν (0)B μν (y)〉 B and 〈B μν (0)C μν (y)〉 B contain the phase factor \(\exp [i\int_{0}^{y} du_{\mu}\,A_{\mu}(u) ]\). However, the Taylor expansion of such a phase factor would yield correlation functions of more than two B μν ’s. On the other hand, the use of the formfactor F corresponds to accounting for only two B μν ’s. For this reason, we must approximate the said phase factor by unity.

References

  1. N. Brambilla, A. Vairo, Phys. Lett. B 407, 167 (1997)

    Article  ADS  Google Scholar 

  2. P. Bicudo, N. Brambilla, J.E.F.T. Ribeiro, A. Vairo, Phys. Lett. B 442, 349 (1998)

    Article  ADS  Google Scholar 

  3. Z. Bern, D.A. Kosower, Phys. Rev. Lett. 66, 1669 (1991)

    Article  ADS  Google Scholar 

  4. Z. Bern, D.A. Kosower, Nucl. Phys. B 379, 451 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  5. M.J. Strassler, Nucl. Phys. B 385, 145 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Reuter, M.G. Schmidt, C. Schubert, Ann. Phys. 259, 313 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. C. Schubert, Phys. Rep. 355, 73 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. D. Antonov, J.E.F.T. Ribeiro, Phys. Rev. D 81, 054027 (2010)

    Article  ADS  Google Scholar 

  9. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  10. S. Narison, QCD Spectral Sum Rules (World Scientific, Singapore, 1989)

    Google Scholar 

  11. M.G. Schmidt, C. Schubert, Phys. Lett. B 318, 438 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  12. A.O. Barvinsky, G.A. Vilkovisky, Nucl. Phys. B 333, 471 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  13. E. Meggiolaro, Phys. Lett. B 451, 414 (1999)

    Article  ADS  Google Scholar 

  14. Yu.M. Makeenko, A.A. Migdal, Phys. Lett. B 88, 135 (1979)

    Article  ADS  Google Scholar 

  15. Yu.M. Makeenko, A.A. Migdal, Nucl. Phys. B 188, 269 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  16. H.G. Dosch, Yu.A. Simonov, Phys. Lett. B 205, 339 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  17. V.I. Shevchenko, J. High Energy Phys. 03, 082 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  18. M. D’Elia, A. Di Giacomo, E. Meggiolaro, Phys. Lett. B 408, 315 (1997)

    Article  ADS  Google Scholar 

  19. A. Di Giacomo, H. Panagopoulos, Phys. Lett. B 285, 133 (1992)

    Article  ADS  Google Scholar 

  20. A. Di Giacomo, E. Meggiolaro, H. Panagopoulos, Nucl. Phys. B 483, 371 (1997)

    Article  ADS  Google Scholar 

  21. V. Shevchenko, Yu. Simonov, Phys. Rev. D 65, 074029 (2002)

    Article  ADS  Google Scholar 

  22. D. Antonov, Ann. Phys. 325, 1304 (2010)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

One of us (D.A.) is grateful for the stimulating discussions to O. Nachtmann and M.G. Schmidt. The work of D.A. was supported by the Portuguese Foundation for Science and Technology (FCT, program Ciência-2008) and by the Center for Physics of Fundamental Interactions (CFIF) at Instituto Superior Técnico (IST), Lisbon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Antonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonov, D., Ribeiro, J.E.F.T. Quark condensate for various heavy flavors. Eur. Phys. J. C 72, 2179 (2012). https://doi.org/10.1140/epjc/s10052-012-2179-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2179-7

Keywords

Navigation