Skip to main content
Log in

Nonsingular black holes in quadratic Palatini gravity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We find that if general relativity is modified at the Planck scale by a Ricci-squared term, electrically charged black holes may be nonsingular. These objects concentrate their mass in a microscopic sphere of radius \(r_{\mathrm{core}}\approx N_{q}^{1/2}l_{\mathrm{P}}/3\), where l P is the Planck length and N q is the number of electric charges. The singularity is avoided if the mass of the object satisfies the condition \(M_{0}^{2}\approx m_{\mathrm{P}}^{2} \alpha_{\mathrm{em}}^{3/2} N_{q}^{3}/2\), where m P is the Planck mass and α em is the fine-structure constant. For astrophysical black holes this amount of charge is so small that their external horizon almost coincides with their Schwarzschild radius. We work within a first-order (Palatini) approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In general, for Palatini f(R,Q) theories the vacuum field equations boil down to GR with an effective cosmological constant.

References

  1. S. Chandrasekhar, The density of white dwarf stars. Philos. Mag. 11, 592 (1931)

    Google Scholar 

  2. S. Chandrasekhar, The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81 (1931)

    Article  ADS  MATH  Google Scholar 

  3. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Fabbri, J. Navarro-Salas, Modeling Black Hole Evaporation (Imp. Coll. Press, London, 2005)

    Book  Google Scholar 

  5. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars (Wiley-Interscience, New York, 1983)

    Book  Google Scholar 

  6. G.J. Olmo, Palatini approach to modified gravity: f(R) theories and beyond. Int. J. Mod. Phys. D 20, 413 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. G.J. Olmo, Palatini actions and quantum gravity phenomenology. J. Cosmol. Astropart. Phys. 1110, 018 (2011)

    Article  ADS  Google Scholar 

  8. G.J. Olmo, P. Singh, Effective action for loop quantum cosmology a la Palatini. J. Cosmol. Astropart. Phys. 0901, 030 (2009)

    Article  ADS  Google Scholar 

  9. C. Barragan, G.J. Olmo, Isotropic and anisotropic bouncing cosmologies in Palatini gravity. Phys. Rev. D 82, 084015 (2010)

    Article  ADS  Google Scholar 

  10. C. Barragan, G.J. Olmo, H. Sanchis-Alepuz, Bouncing cosmologies in Palatini f(R) gravity. Phys. Rev. D 80, 024016 (2009)

    Article  ADS  Google Scholar 

  11. G.J. Olmo, H. Sanchis-Alepuz, S. Tripathi, Dynamical aspects of generalized Palatini theories of gravity. Phys. Rev. D 80, 024013 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Borunda, B. Janssen, M. Bastero-Gil, Palatini versus metric formulation in higher curvature gravity. J. Cosmol. Astropart. Phys. 0811, 008 (2008)

    Article  ADS  Google Scholar 

  13. R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke, Palatini–Lovelock–Cartan gravity—Bianchi identities for stringy fluxes. arXiv:1202.4934 [hep-th]

  14. G.J. Olmo, D. Rubiera-Garcia, Reissner–Nordström black holes in extended Palatini theories. Phys. Rev. D (2012, to appear)

  15. G.W. Gibbons, D.A. Rasheed, Electric–magnetic duality rotations in nonlinear electrodynamics. Nucl. Phys. B 454, 185 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. T. Ortin, Gravity and Strings. Cambridge Monographs on Mathematical Physics (C.U.P., Cambridge, 2004)

    Book  MATH  Google Scholar 

  17. G. Dvali, C. Gomez, S. Mukhanov, Probing quantum geometry at LHC. J. High Energy Phys. 1102, 012 (2011)

    ADS  Google Scholar 

  18. G. Dvali, C. Gomez, S. Mukhanov, Black hole masses are quantized. arXiv:1106.5894 [hep-ph]

  19. S. Dimopoulos, G. Landsberg, Black holes at the LHC. Phys. Rev. Lett. 87, 161602 (2001)

    Article  ADS  Google Scholar 

  20. S.B. Giddings, S. D Thomas, High-energy colliders as black hole factories: the end of short distance physics. Phys. Rev. D 65, 056010 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Spanish grant FIS2008-06078-C03-02, the Consolider Program CPAN (CSD2007-00042), and the JAE-doc program. Useful comments by A. Fabbri, J. Morales and J. Navarro-Salas are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rubiera-Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmo, G.J., Rubiera-Garcia, D. Nonsingular black holes in quadratic Palatini gravity. Eur. Phys. J. C 72, 2098 (2012). https://doi.org/10.1140/epjc/s10052-012-2098-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2098-7

Keywords

Navigation