Skip to main content
Log in

Top quark as a resonance

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We suggest the description of the dressed fermion propagator with parity non-conservation in the form with separated positive and negative energy poles. We found general form of the γ-matrix off-shell projectors and corresponding resonance factors. The parity violation leads to deviation of resonance factors from the naive Breit–Wigner form and to appearance of non-trivial spin corrections. However, for top quark with SM vertex the resonance factor returns to the standard one due to Γ/m≪1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. From our point of view, this representation for dressed fermion propagator is physically justified. If we are concerned with baryon resonance production, πNN′→πN, then coefficients at Λ ± in (5) appear in different partial waves and it makes no sense to join them together. Besides, it has long been known that proper variable for fermions is W, not s, see e.g. MacDowell symmetry [16], when W→−W.

  2. In fact we used for our purposes the so called spectral representation of operator (see, e.g. textbook [17]). In quantum-mechanical notations it has the form:

    $$ \hat{A}=\sum_{i}\lambda_{i} \varPi_{i}=\sum_{i}\lambda_{i} |i \rangle \langle i|, $$

    where |i〉 are eigenvectors

    $$ \hat{A}|i \rangle =\lambda_{i}|i \rangle , $$

    and Π i =|i〉〈i| are corresponding projectors.

  3. We wrote λ i in a form respecting the symmetry property λ 2(W)=λ 1(−W), valid for bare values.

  4. We want to pay attention on appearance of factor K in these formulas, it arises because λ 1 and λ 2 are normalized at different points: W=m and W=−m correspondingly. Note that the natural variable for fermions is just W, but not W 2, it is well known, e.g. in πN scattering. This fact leads to some difference in resonance denominators of fermion and boson propagators, noted in [20].

  5. We prefer to use the form (51) instead of chiral projectors a ±=(1±γ 5)/2 to have more simple intermediate expressions.

  6. The requirement \(\lambda_{1}^{\text {r}}(W_{1})=0\) allows unambiguously to fix x.

References

  1. W. Wagner, Rep. Prog. Phys. 68, 2409 (2005)

    Article  ADS  Google Scholar 

  2. A. Quadt, Eur. Phys. J. C 48, 835 (2006)

    Article  ADS  Google Scholar 

  3. J.R. Incandela, A. Quadt, W. Wagner, D. Wicke, Prog. Part. Nucl. Phys. 63, 239 (2009)

    Article  ADS  Google Scholar 

  4. V. Khachatryan et al., Phys. Lett. B 695, 424 (2011)

    Article  ADS  Google Scholar 

  5. S. Chatrchyan et al., J. High Energy Phys. 1107, 049 (2011)

    Article  ADS  Google Scholar 

  6. G. Aad et al., Eur. Phys. J. C 71, 1577 (2011)

    Article  ADS  Google Scholar 

  7. G. Aad et al., Phys. Lett. B 707, 459 (2012)

    Article  ADS  Google Scholar 

  8. W. Bernreuther, J. Phys. G 35, 083001 (2008)

    Article  ADS  Google Scholar 

  9. A.E. Kaloshin, V.P. Lomov, Phys. At. Nucl. 69, 541 (2006)

    Article  Google Scholar 

  10. B.A. Kniehl, A. Sirlin, Phys. Rev. D 77, 116012 (2008)

    Article  ADS  Google Scholar 

  11. A. Sirlin, Phys. Rev. Lett. 67, 2127 (1991)

    Article  ADS  Google Scholar 

  12. A. Sirlin, Phys. Lett. B 267, 240 (1991)

    Article  ADS  Google Scholar 

  13. M. Passera, A. Sirlin, Phys. Rev. D 58, 113010 (1998)

    Article  ADS  Google Scholar 

  14. P. Gambino, P.A. Grassi, Phys. Rev. D 62, 076002 (2000)

    Article  ADS  Google Scholar 

  15. M. Nekrasov, Phys. Lett. B 531, 225 (2002)

    Article  ADS  MATH  Google Scholar 

  16. S.W. MacDowell, Phys. Rev. 116, 774 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A. Messiah, Quantum Mechanics, vol. 1 (North-Holland, Amsterdam, 1961)

    Google Scholar 

  18. A. Denner, Nucl. Phys. B 347, 184 (1990)

    Article  ADS  Google Scholar 

  19. K.I. Aoki, Z. Hioki, M. Konuma, R. Kawabe, T. Muta, Prog. Theor. Phys. Suppl. 73, 1 (1982)

    Article  ADS  Google Scholar 

  20. M.O. Gonchar, A.E. Kaloshin, V.P. Lomov, Mod. Phys. Lett. A 22, 2511 (2007)

    Article  ADS  MATH  Google Scholar 

  21. A. Denner, Fortschr. Phys. 41, 307 (1993)

    Google Scholar 

  22. D.Y. Bardin, G. Passarino, The Standard Model in the Making: Precision Study of the Electroweak Interactions. International Series of Monographs on Physics (Clarendon Press, Oxford, 1999)

    Google Scholar 

  23. D. Espriu, J. Manzano, P. Talavera, Phys. Rev. D 66, 076002 (2002)

    Article  ADS  Google Scholar 

  24. W. Grimus, P. Stockinger, Phys. Rev. D 57, 1762 (1998)

    Article  ADS  Google Scholar 

  25. W. Grimus, P. Stockinger, S. Mohanty, Phys. Rev. D 59, 013011 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Slava Lee for participation at initial stage of the work and V.A. Naumov for discussion and valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Lomov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaloshin, A.E., Lomov, V.P. Top quark as a resonance. Eur. Phys. J. C 72, 2094 (2012). https://doi.org/10.1140/epjc/s10052-012-2094-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2094-y

Keywords

Navigation