Skip to main content
Log in

Effect of electromagnetic fields on the creation of scalar particles in a flat Robertson–Walker space-time

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The influence of electromagnetic fields on the creation of scalar particles from vacuum in a flat Robertson–Walker space-time is studied. The Klein–Gordon equation with varying electric field and constant magnetic one is solved. The Bogoliubov transformation method is applied to calculate the pair creation probability and the number density of created particles. It is shown that the electric field amplifies the creation of scalar particles while the magnetic field minimizes it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ruffini, G. Vereshchagin, S.-S. Xue, Phys. Rep. 487 (2010)

  2. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. E. Bresin, C. Itzykson, Phys. Rev. D 2, 1191 (1970)

    Article  ADS  Google Scholar 

  4. E.S. Fradkin, D.M. Gitman, S.M. Shvartsman, Quantum Electrodynamics with Unstable Vacuum (Springer, Berlin, 1991)

    Google Scholar 

  5. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

    MATH  Google Scholar 

  6. S.A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  7. V.F. Mukhanov, S. Winitzki, Introduction to Quantum Effects in Gravity (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  8. A.A. Grib, S.G. Mamayev, V.M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Lab. Publ., St. Petersburg, 1994)

    Google Scholar 

  9. L. Parker, D.J. Toms, Quantum Field Theory in Curved Space-Time: Quantized Fields and Gravity (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  10. S. Winitzki, Phys. Rev. D 72, 104011 (2005)

    Article  ADS  Google Scholar 

  11. S. Debnath, A.K. Sanyal, Class. Quantum Gravity 28, 145015 (2011)

    Article  ADS  Google Scholar 

  12. J.A.S. Lima, F.E. Silva, R.C. Santos, Class. Quantum Gravity 25, 205006 (2008)

    Article  ADS  Google Scholar 

  13. V. Sahni, S. Habib, Phys. Rev. Lett. 81, 1766 (1998)

    Article  ADS  Google Scholar 

  14. L. Kofman, Preheating After Inflation. Lect. Notes Phys., vol. 738 (Springer, Berlin, 2008), p. 55

    Google Scholar 

  15. J. Martin, Inflationary Perturbations: The Cosmological Schwinger Effect. Lect. Notes Phys., vol. 738 (Springer, Berlin, 2008), p. 193

    Google Scholar 

  16. I. Antoniadis, P.O. Mazur, E. Mottola, New J. Phys. 9, 11 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Chen, P. Wu, H. Yu, Z. Li, Eur. Phys. J. C 72, 1861 (2012)

    Article  ADS  Google Scholar 

  18. V.M. Villalba, Phys. Rev. D 60, 127501 (1999)

    Article  ADS  Google Scholar 

  19. S. Haouat, R. Chekireb, Int. J. Theor. Phys. 51, 1704 (2012)

    Article  Google Scholar 

  20. G. Schäfer, H. Dehnen, J. Phys. A, Math. Gen. 13, 517 (1980)

    Article  ADS  Google Scholar 

  21. S. Moradi, Mod. Phys. Lett. A 24, 1129 (2009)

    Article  ADS  MATH  Google Scholar 

  22. I.L. Buchbinder, S.D. Odintsov, Sov. Phys. J. 25, 385 (1982)

    Article  Google Scholar 

  23. L. Parker, Phys. Rev. Lett. 21, 562 (1968)

    Article  ADS  Google Scholar 

  24. L. Parker, Phys. Rev. D 183, 1057 (1969)

    Article  ADS  MATH  Google Scholar 

  25. L. Parker, Phys. Rev. D 3, 346 (1971)

    Article  ADS  Google Scholar 

  26. A.A. Grip, S.G. Mamayev, V.M. Mostepanenko, Gen. Relativ. Gravit. 7, 535 (1976)

    Article  ADS  Google Scholar 

  27. A.A. Grip, S.G. Mamayev, V.M. Mostepanenko, J. Phys. A, Math. Gen. 13, 2057 (1980)

    Article  ADS  Google Scholar 

  28. J. Haro, E. Elizald, J. Phys. A, Math. Theor. 41, 372003 (2008)

    Article  Google Scholar 

  29. J. Haro, J. Phys. A: Math. Theor. 44 (2011)

  30. S. Gavrilov, D.M. Gitman, S.D. Odintsov, Int. J. Mod. Phys. A 12, 4837 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. I.L. Bukhbinder, Izv. Vyssh. Uchebn. Zaved. Fiz. 7, 3 (1980)

    MathSciNet  Google Scholar 

  32. I.H. Duru, N. Ünal, Phys. Rev. D 34, 966 (1986)

    Article  ADS  Google Scholar 

  33. D.M. Chitre, J.B. Hartle, Phys. Rev. D 16, 251 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Biswas, J. Guha, N.G. Sarkar, Class. Quantum Gravity 12, 1591 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. J. Guha, D. Biswas, N.G. Sarkar, S. Biswas, Class. Quantum Gravity 12, 1641 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Biswas, A. Shaw, P. Misra, Gen. Relativ. Gravit. 34, 665 (2002)

    Article  MATH  Google Scholar 

  37. S. Biswas, I. Chowdhury, Int. J. Mod. Phys. D 15, 937 (2006)

    Article  ADS  MATH  Google Scholar 

  38. E. Akhmedov, Mod. Phys. Lett. A 25, 2815 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. S.P. Kim, arXiv:1008.0577v1 [hep-th]

  40. J. Garriga, Phys. Rev. D 49, 6343 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  41. V.M. Villalba, W. Greiner, Phys. Rev. D 65, 025007 (2001)

    Article  ADS  Google Scholar 

  42. V.M. Villalba, Prog. Theor. Phys. 90, 851 (1993)

    Article  ADS  Google Scholar 

  43. S. Haouat, R. Chekireb, Mod. Phys. Lett. A 26, 2653 (2011)

    Article  MathSciNet  Google Scholar 

  44. C. Bernard, A. Duncun, Ann. Phys. 107, 201 (1977)

    Article  ADS  MATH  Google Scholar 

  45. M.R. Setare, Int. J. Theor. Phys. 43, 2237 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. F. Pascoal, C. Farina, Int. J. Theor. Phys. 46 (2007)

  47. S. Moradi, Int. J. Theor. Phys. 47, 2808 (2008)

    Article  MathSciNet  Google Scholar 

  48. S. Moradi, J. Geom. Phys. 59, 173 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. S.P. Kim, H.K. Lee, Y. Yoon, Phys. Rev. D 78, 105013 (2008)

    Article  ADS  Google Scholar 

  50. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1979)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for their precious comments which greatly improved the paper. The work of S. Haouat is partially supported by Algerian Ministry of High Education and Scientific Research and ANDRU under the PNR project: COSMOGR (code: 8/u18/976, contract n 28/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Haouat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haouat, S., Chekireb, R. Effect of electromagnetic fields on the creation of scalar particles in a flat Robertson–Walker space-time. Eur. Phys. J. C 72, 2034 (2012). https://doi.org/10.1140/epjc/s10052-012-2034-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2034-x

Keywords

Navigation