Skip to main content
Log in

Entropy spectrum of a Kerr anti-de Sitter black hole

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The entropy spectrum of a spherically symmetric black hole was derived without the quasinormal modes in the work of Majhi and Vagenas. Extending this work to rotating black holes, we quantize the entropy and the horizon area of a Kerr anti-de Sitter black hole by two methods. The spectra of entropy and area are obtained via the Bohr–Sommerfeld quantization rule and the adiabatic invariance in the first way. By addressing the wave function of emitted (absorbed) particles, the entropy and the area are quantized in the second one. Both results show that the entropy and the area spectra are equally spaced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.D. Bekenstein, The quantum mass spectrum of the Kerr black hole. Lett. Nuovo Cimento 11, 467 (1974)

    Article  ADS  Google Scholar 

  2. S. Hod, Bohr’s correspondence principle and the area spectrum of quantum black holes. Phys. Rev. Lett. 81, 4293 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. O. Dreyer, Quasinormal modes, the area spectrum, and black hole entropy. Phys. Rev. Lett. 90, 081301 (2003)

    Article  ADS  Google Scholar 

  4. G. Kunstatter, D-dimensional black hole entropy spectrum from quasi-normal modes. Phys. Rev. Lett. 90, 161301 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  5. M.R. Setare, Area spectrum of extremal Reissner–Nordstrom black holes from quasi-normal modes. Phys. Rev. D 69, 044016 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  6. M.R. Setare, Non-rotating BTZ black hole area spectrum from quasi-normal modes. Class. Quantum Gravity 21, 1453 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M.R. Setare, Near extremal Schwarzschild-de Sitter black hole area spectrum from quasi-normal modes. Gen. Relativ. Gravit. 37, 1411 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M. Maggiore, The physical interpretation of the spectrum of black hole quasinormal modes. Phys. Rev. Lett. 100, 141301 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  9. E.C. Vagenas, Area spectrum of rotating black holes via the new interpretation of quasinormal modes. J. High Energy Phys. 0811, 073 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. A.J.M. Medved, On the Kerr quantum area spectrum. Class. Quantum Gravity 25, 205014 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. D. Kothawala, T. Padmanabhan, S. Sarkar, Is gravitational entropy quantized? Phys. Rev. D 78, 104018 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Banerjee, B.R. Majhi, E.C. Vagenas, Quantum tunneling and black hole spectroscopy. Phys. Lett. B 686, 279 (2010)

    Article  ADS  Google Scholar 

  13. A. Lopez-Ortega, Area spectrum of the D-dimensional de Sitter spacetime. Phys. Lett. B 682, 85 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Fernando, Spinning dilaton black holes in 2+1 dimensions: quasi-normal modes and the area spectrum. Phys. Rev. D 79, 124026 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  15. K. Ropotenko, Quantization of the black hole area as quantization of the angular momentum component. Phys. Rev. D 80, 044022 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. S.W. Wei, R. Li, Y.X. Liu, J.R. Ren, Quantization of black hole entropy from quasinormal modes. J. High Energy Phys. 0903, 076 (2009)

    MathSciNet  Google Scholar 

  17. Y. Kwon, S. Nam, Area spectra of the rotating BTZ black hole from quasi-normal modes. arXiv:1001.5106 [hep-th]

  18. Y.S. Myung, Area spectrum of slowly rotating black holes. arXiv:1003.3519 [hep-th]

  19. D. Chen, H. Yang, X.T. Zu, Area spectra of near extremal black holes. Eur. Phys. J. C 69, 289 (2010)

    Article  ADS  Google Scholar 

  20. M.R. Setare, E.C. Vagenas, Area spectrum of Kerr and extremal Kerr black holes from Quasinormal modes. Mod. Phys. Lett. A 20, 1923 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. E. Berti, V. Cardoso, A.O. Starinets, Quasinormal modes of black holes and black branes. arXiv:0905.2975 [gr-qc]

  22. S.W. Wei, Y.X. Liu, K. Yang, Y. Zhong, Entropy/area spectra of the charged black hole from quasinormal modes. Phys. Rev. D 81, 104042 (2010)

    Article  ADS  Google Scholar 

  23. W. Li, L. Xu, J. Lu, Area spectrum of near-extremal SdS black holes via the new interpretation of quasinormal modes. Phys. Lett. B 676, 177 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  24. P. Gonzalez, E. Papantonopoulos, J. Saavedra, Quasi-normal modes of scalar perturbations, mass and area spectrum of Chern-Simons black holes. J. High Energy Phys. 08, 050 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  25. B.R. Majhi, E.C. Vagenas, Black hole spectroscopy via adiabatic invariance. Phys. Lett. B 701, 623 (2011)

    Article  ADS  Google Scholar 

  26. B. Carter, Killing horizons and orthogonally transitive groups in space-time. Commun. Math. Phys. 10, 280 (1968)

    MATH  Google Scholar 

  27. Z.Z. Ma, Euler numbers of four-dimensional rotating black holes with the Euclidean signature. Phys. Rev. D 67, 024027 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  28. G.W. Gibbons, M.J. Perry, Black holes and thermal Green functions. Proc. R. Soc. Lond. A 358, 467 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  29. M.K. Parikh, F. Wilczek, Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  30. J.Y. Zhang, Z. Zhao, Hawking radiation of charged particles via tunneling from the Reissner–Nordstrom black hole. J. High Energy Phys. 10, 055 (2005)

    Article  ADS  Google Scholar 

  31. K. Umetsu, Hawking radiation from Kerr–Newman black hole and tunneling mechanism. Int. J. Mod. Phys. A 25, 4123 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. R. Kerner, R.B. Mann, Fermions tunnelling from black holes. Class. Quantum Gravity 25, 095014 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  33. R. Kerner, R.B. Mann, Charged fermions tunnelling from Kerr–Newman black holes. Phys. Lett. B 665, 277 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  34. D. Chen, H. Yang, X.T. Zu, Fermion tunneling from anti-de Sitter spaces. Eur. Phys. J. C 56, 119 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. X.X. Zeng, X.M. Liu, W.B. Liu, Periodicity and area spectrum of black holes. arXiv:1203.5947 [gr-qc]

  36. R.K. Kaul, P. Majumdar, Logarithmic correction to the Bekenstein–Hawking entropy. Phys. Rev. Lett. 84, 5255 (2000)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Natural Science Foundation of China (Grant No. 11178018 and No. 11175039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Yang, H. Entropy spectrum of a Kerr anti-de Sitter black hole. Eur. Phys. J. C 72, 2027 (2012). https://doi.org/10.1140/epjc/s10052-012-2027-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2027-9

Keywords

Navigation