Skip to main content
Log in

Electroweak precision observables in a fourth generation model with general flavour structure

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We calculate the contributions to electroweak precision observables (EWPOs) due to a fourth generation of fermions with the most general (quark-) flavour structure (but assuming Dirac neutrinos and a trivial flavour structure in the lepton sector). The new-physics contributions to the EWPOs are calculated at one-loop order using automated tools (FeynArts/FormCalc). No further approximations are made in our calculation. We discuss the size of non-oblique contributions arising from Z–quark–anti-quark vertex corrections and the dependence of the EWPOs on all CKM mixing angles involving the fourth generation. We find that the electroweak precision observables are sensitive to two of the fourth-generation mixing angles and that the corresponding constraints on these angles are competitive with those obtained from flavour physics. For non-trivial 4×4 flavour structures, the non-oblique contributions lead to relative corrections of several permille and should be included in a global fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. If the first two assumptions are still valid, the case of new physics near the electroweak scale can be handled by introducing three additional oblique parameters. This was discussed in [38].

  2. The branching fraction R c and asymmetry factor \(\mathcal {A}_{c}\) for the charm quark also receive non-oblique corrections, but these observables are less constraining due to their larger experimental error.

  3. These are independent SM3 input parameters in the on-shell renormalisation scheme [70], which is the scheme we used in our calculations.

  4. If α(M Z ), M Z and M W are the same in the SM3 and SM4, the new physics only enters at one-loop order. In the next section we deal with the case where a different value of M W is chosen in the two models.

  5. See e.g. [71] for a detailed description.

References

  1. G.C. Branco, L. Lavoura, Nucl. Phys. B 278, 738 (1986)

    Article  ADS  Google Scholar 

  2. P.H. Frampton, P. Hung, M. Sher, Phys. Rep. 330, 263 (2000). arXiv:hep-ph/9903387 [hep-ph]

    Article  ADS  Google Scholar 

  3. F. del Aguila, M. Perez-Victoria, J. Santiago, J. High Energy Phys. 09, 011 (2000). arXiv:hep-ph/0007316

    Article  Google Scholar 

  4. G. Barenboim, F. Botella, O. Vives, Nucl. Phys. B 613, 285 (2001). arXiv:hep-ph/0105306 [hep-ph]

    Article  ADS  Google Scholar 

  5. B. Holdom, Phys. Rev. D 54, 721 (1996). arXiv:hep-ph/9602248

    Article  ADS  Google Scholar 

  6. M. Maltoni, V. Novikov, L. Okun, A.N. Rozanov, M. Vysotsky, Phys. Lett. B 476, 107 (2000). arXiv:hep-ph/9911535 [hep-ph]

    Article  ADS  Google Scholar 

  7. H.-J. He, N. Polonsky, S.-f. Su, Phys. Rev. D 64, 053004 (2001). arXiv:hep-ph/0102144 [hep-ph]

    Article  ADS  Google Scholar 

  8. V. Novikov, L. Okun, A.N. Rozanov, M. Vysotsky, Phys. Lett. B 529, 111 (2002). arXiv:hep-ph/0111028 [hep-ph]

    Article  ADS  Google Scholar 

  9. V. Novikov, L. Okun, A.N. Rozanov, M. Vysotsky, JETP Lett. 76, 127 (2002). arXiv:hep-ph/0203132 [hep-ph]

    Article  ADS  Google Scholar 

  10. G.D. Kribs, T. Plehn, M. Spannowsky, T.M. Tait, Phys. Rev. D 76, 075016 (2007). arXiv:0706.3718 [hep-ph]

    Article  ADS  Google Scholar 

  11. V.A. Novikov, A.N. Rozanov, M.I. Vysotsky, Phys. At. Nucl. 73, 636 (2010). arXiv:0904.4570 [hep-ph]

    Article  Google Scholar 

  12. B. Holdom et al., PMC Phys. A 3, 4 (2009). arXiv:0904.4698 [hep-ph]

    Article  ADS  Google Scholar 

  13. J. Alwall et al., Eur. Phys. J. C 49, 791 (2007). arXiv:hep-ph/0607115

    Article  ADS  Google Scholar 

  14. M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild, Phys. Rev. D 79, 113006 (2009). arXiv:0902.4883 [hep-ph]

    Article  ADS  Google Scholar 

  15. M.S. Chanowitz, Phys. Rev. D 79, 113008 (2009). arXiv:0904.3570 [hep-ph]

    Article  ADS  Google Scholar 

  16. W.-S. Hou, Y.-Y. Mao, C.-H. Shen, Phys. Rev. D 82, 036005 (2010). arXiv:1003.4361 [hep-ph]

    Article  ADS  Google Scholar 

  17. O. Eberhardt, A. Lenz, J. Rohrwild, Phys. Rev. D 82, 095006 (2010). arXiv:1005.3505 [hep-ph]

    Article  ADS  Google Scholar 

  18. W.-S. Hou, M. Nagashima, A. Soddu, Phys. Rev. D 76, 016004 (2007). arXiv:hep-ph/0610385 [hep-ph]

    Article  ADS  Google Scholar 

  19. A. Soni, A.K. Alok, A. Giri, R. Mohanta, S. Nandi, Phys. Lett. B 683, 302 (2010). arXiv:0807.1971 [hep-ph]

    Article  ADS  Google Scholar 

  20. A. Soni, A.K. Alok, A. Giri, R. Mohanta, S. Nandi, Phys. Rev. D 82, 033009 (2010). arXiv:1002.0595 [hep-ph]

    Article  ADS  Google Scholar 

  21. A.J. Buras, B. Duling, T. Feldmann, T. Heidsieck, C. Promberger et al., J. High Energy Phys. 1009, 106 (2010). arXiv:1002.2126 [hep-ph]

    Article  ADS  Google Scholar 

  22. A.J. Buras, B. Duling, T. Feldmann, T. Heidsieck, C. Promberger, J. High Energy Phys. 1009, 104 (2010). arXiv:1006.5356 [hep-ph]

    Article  ADS  Google Scholar 

  23. H. Lacker, A. Menzel, J. High Energy Phys. 1007, 006 (2010). arXiv:1003.4532 [hep-ph]

    Article  ADS  Google Scholar 

  24. J. Erler, P. Langacker, Phys. Rev. Lett. 105, 031801 (2010). arXiv:1003.3211 [hep-ph]

    Article  ADS  Google Scholar 

  25. Search for t’ pair production in lepton+jets channel. CMS Physics Analysis Summary, CMS-PAS-EXO-11-051 (2011)

  26. Search for a heavy bottom-like quark in 1:14 fb of pp collisions at \(\sqrt{s} = 7~\mathrm{TeV}\). CMS Physics Analysis Summary, CMS-PAS-EXO-11-036 (2011)

  27. X. Ruan, Z. Zhang (2011). arXiv:1105.1634 [hep-ph]

  28. J.F. Gunion, (2011). arXiv:1105.3965 [hep-ph]

  29. K. Belotsky, D. Fargion, M. Khlopov, R. Konoplich, K. Shibaev, Phys. Rev. D 68, 054027 (2003). arXiv:hep-ph/0210153 [hep-ph]

    Article  ADS  Google Scholar 

  30. A. Rozanov, M. Vysotsky, Phys. Lett. B 700, 313 (2011). arXiv:1012.1483 [hep-ph]

    Article  ADS  Google Scholar 

  31. W.-Y. Keung, P. Schwaller, J. High Energy Phys. 1106, 054 (2011). arXiv:1103.3765 [hep-ph]

    Article  ADS  Google Scholar 

  32. S. Cetin, T. Cuhadar-Donszelmann, M. Sahin, S. Sultansoy, G. Unel (2011). arXiv:1108.4071 [hep-ph]

  33. L.M. Carpenter (2011). arXiv:1110.4895 [hep-ph]

  34. M.S. Chanowitz, Phys. Rev. D 035018 (2010). arXiv:1007.0043 [hep-ph]

  35. S. Nandi, A. Soni (2010). arXiv:1011.6091 [hep-ph]

  36. A.K. Alok, A. Dighe, D. London (2010). arXiv:1011.2634 [hep-ph]

  37. M.E. Peskin, T. Takeuchi, Phys. Rev. D 46, 381 (1992).

    Article  ADS  Google Scholar 

  38. I. Maksymyk, C.P. Burgess, D. London, Phys. Rev. D 50, 529 (1994). arXiv:hep-ph/9306267

    Article  ADS  Google Scholar 

  39. D.Y. Bardin et al., Comput. Phys. Commun. 133, 229 (2001). arXiv:hep-ph/9908433. http://www-zeuthen.desy.de/theory/research/zfitter/index.html

    Article  MATH  ADS  Google Scholar 

  40. A.B. Arbuzov et al., Comput. Phys. Commun. 174, 728 (2006). arXiv:hep-ph/0507146

    Article  ADS  Google Scholar 

  41. T. Hahn, M. Rauch, Nucl. Phys. Proc. Suppl. 157, 236 (2006). arXiv:hep-ph/0601248

    Article  ADS  Google Scholar 

  42. T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260

    Article  MATH  ADS  Google Scholar 

  43. T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565

    Article  ADS  Google Scholar 

  44. (2010). arXiv:1012.2367 [hep-ex]

  45. K. Nakamura et al., Particle Data Group. J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  46. G. Degrassi, P. Gambino, A. Vicini, Phys. Lett. B 383, 219 (1996). arXiv:hep-ph/9603374 [hep-ph]

    Article  ADS  Google Scholar 

  47. G. Degrassi, P. Gambino, Nucl. Phys. B 567, 3 (2000). arXiv:hep-ph/9905472 [hep-ph]

    Article  Google Scholar 

  48. A. Freitas, W. Hollik, W. Walter, G. Weiglein, Phys. Lett. B 495, 338 (2000). arXiv:hep-ph/0007091 [hep-ph]

    Article  ADS  Google Scholar 

  49. A. Freitas, W. Hollik, W. Walter, G. Weiglein, Nucl. Phys. B 632, 189 (2002). arXiv:hep-ph/0202131 [hep-ph]

    Article  ADS  Google Scholar 

  50. M. Awramik, M. Czakon, Phys. Lett. B 568, 48 (2003). arXiv:hep-ph/0305248 [hep-ph]

    Article  ADS  Google Scholar 

  51. M. Awramik, M. Czakon, A. Onishchenko, O. Veretin, Phys. Rev. D 68, 053004 (2003). arXiv:hep-ph/0209084 [hep-ph]

    Article  ADS  Google Scholar 

  52. K. Chetyrkin, J.H. Kuhn, M. Steinhauser, Phys. Rev. Lett. 75, 3394 (1995). arXiv:hep-ph/9504413 [hep-ph]

    Article  ADS  Google Scholar 

  53. K. Chetyrkin, J.H. Kuhn, M. Steinhauser, Nucl. Phys. B 482, 213 (1996). arXiv:hep-ph/9606230 [hep-ph]

    Article  ADS  Google Scholar 

  54. M. Faisst, J.H. Kuhn, T. Seidensticker, O. Veretin, Nucl. Phys. B 665, 649 (2003). arXiv:hep-ph/0302275 [hep-ph]

    Article  ADS  Google Scholar 

  55. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. Lett. 93, 201805 (2004). arXiv:hep-ph/0407317 [hep-ph]

    Article  ADS  Google Scholar 

  56. R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci, A. Vicere, Phys. Lett. B 288, 95 (1992). arXiv:hep-ph/9205238 [hep-ph]

    Article  ADS  Google Scholar 

  57. R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci, A. Vicere, Nucl. Phys. B 409, 105 (1993)

    Article  ADS  Google Scholar 

  58. J. Fleischer, O. Tarasov, F. Jegerlehner, Phys. Rev. D 51, 3820 (1995)

    Article  ADS  Google Scholar 

  59. G. Degrassi, P. Gambino, A. Sirlin, Phys. Lett. B 394, 188 (1997). arXiv:hep-ph/9611363 [hep-ph]

    Article  ADS  Google Scholar 

  60. A. Djouadi, C. Verzegnassi, Phys. Lett. B 195, 265 (1987)

    Article  ADS  Google Scholar 

  61. B.A. Kniehl, Nucl. Phys. B 347, 86 (1990)

    Article  ADS  Google Scholar 

  62. F. Halzen, B.A. Kniehl, Nucl. Phys. B 353, 567 (1991)

    Article  ADS  Google Scholar 

  63. B.A. Kniehl, A. Sirlin, Nucl. Phys. B 371, 141 (1992)

    Article  ADS  Google Scholar 

  64. B.A. Kniehl, A. Sirlin, Phys. Rev. D 47, 883 (1993)

    Article  ADS  Google Scholar 

  65. A. Djouadi, P. Gambino, Phys. Rev. D 49, 3499 (1994). arXiv:hep-ph/9309298 [hep-ph]

    Article  ADS  Google Scholar 

  66. G. Montagna, O. Nicrosini, F. Piccinini, G. Passarino, Comput. Phys. Commun. 117, 278 (1999). arXiv:hep-ph/9804211

    Article  ADS  Google Scholar 

  67. D. Bardin et al., in Reports of the Working Group on Precision Calculations for the Z Resonance, Workshop Group on Precision Calculations for the Z Resonance, Geneva, Switzerland, 14 Jan 1994, CERN 95-03 (1994), pp. 7–162

    Google Scholar 

  68. A. Czarnecki, J.H. Kuhn, Phys. Rev. Lett. 77, 3955 (1996). arXiv:hep-ph/9608366

    Article  ADS  Google Scholar 

  69. R. Harlander, T. Seidensticker, M. Steinhauser, Phys. Lett. B 426, 125 (1998). arXiv:hep-ph/9712228

    Article  ADS  Google Scholar 

  70. M. Bohm, H. Spiesberger, W. Hollik, Fortschr. Phys. 34, 687 (1986)

    Google Scholar 

  71. M. Böhm, A. Denner, H. Joos, Gauge Theories of the Strong and Electroweak Interaction (Teubner, Leipzig, 2001)

    Book  Google Scholar 

  72. A. Sirlin, Phys. Rev. D 22, 971 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alexander Lenz and Ulrich Nierste for fruitful discussions and thorough proof reading.

J.R. is supported by DFG Sonderforschungsbereich SFB/TR 9 “Computergestützte Theoretische Teilchenphysik”. P.G. is supported by DFG SFB/TR9. M.W. is partially supported by project DFG NI 1105/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wiebusch.

Appendix A: Parametrisation of the CKM matrix

Appendix A: Parametrisation of the CKM matrix

The CKM matrix of the SM3 depends on three mixing angles θ 12, θ 13 and θ 23 and one complex phase δ 13. Its elements are given by

(18)

where c ij =cosθ ij and s ij =sinθ ij . The SM4 CKM matrix is parametrised by three additional mixing angles θ 14, θ 24 and θ 34 and two additional phases δ 14 and δ 24. In terms of these parameters, it is then written as

(19)

with

$$ \begin{array}{@{}ll} \multicolumn{2}{@{}l}{V_{ud} = c_{12} c_{13} c_{14},\qquad V_{us} = c_{13} c_{14} s_{12},} \\ \noalign {\vspace {5pt}} \multicolumn{2}{@{}l}{V_{ub} = c_{14} s_{13}e^{-i\delta_{13}},\qquad V_{ub'} = s_{14}e^{-i\delta_{14}},} \\ \noalign {\vspace {5pt}} \multicolumn{2}{@{}l}{V_{cb'} = c_{14} s_{24}e^{-i\delta_{24}},\qquad V_{tb'} = c_{14} c_{24} s_{34},} \\ \noalign {\vspace {5pt}} \multicolumn{2}{@{}l}{V_{t'b'} = c_{14} c_{24} c_{34},} \\ \noalign {\vspace {5pt}} V_{cd} =& -c_{23} c_{24} s_{12}\\ \noalign {\vspace {5pt}} &{} + c_{12} \bigl(-c_{24} s_{13} s_{23} e^{i\delta_{13}} - c_{13} s_{14} s_{24}e^{i(\delta_{14}-\delta_{24})} \bigr), \\ \noalign {\vspace {5pt}} V_{cs} =& c_{12} c_{23} c_{24} \\ \noalign {\vspace {5pt}} & {}+ s_{12} \bigl(-c_{24} s_{13} s_{23} e^{i\delta_{13}} - c_{13} s_{14} s_{24}e^{i(\delta_{14}-\delta_{24})}\bigr), \\ \noalign {\vspace {5pt}} V_{cb} =& c_{13} c_{24} s_{23} -s_{13} s_{14} s_{24}e^{i(\delta_{14}-\delta_{13}-\delta_{24})}, \\ \noalign {\vspace {5pt}} V_{td} =& -s_{12} \bigl(-c_{34} s_{23} - c_{23} s_{24} s_{34} e^{i\delta_{24}} \bigr) \\ \noalign {\vspace {5pt}} &{} + c_{12} \bigl(-c_{13} c_{24} s_{14} s_{34} e^{i\delta_{14}}\\ \noalign {\vspace {5pt}} &{} -s_{13}e^{i\delta_{13}} \bigl(c_{23} c_{34} - s_{23} s_{24} s_{34} e^{i\delta_{24}} \bigr) \bigr), \\ \noalign {\vspace {5pt}} V_{ts} =& c_{12} \bigl(-c_{34} s_{23} -c_{23} s_{24} s_{34} e^{i\delta_{24}} \bigr) \\ \noalign {\vspace {5pt}} &{} + s_{12} \bigl(-c_{13} c_{24} s_{14} s_{34} e^{i\delta_{14}} \\ \noalign {\vspace {5pt}} &{}- s_{13}e^{i\delta_{13}} \bigl(c_{23} c_{34} - s_{23} s_{24} s_{34} e^{i\delta_{24}} \bigr) \bigr), \\ \noalign {\vspace {5pt}} V_{tb} =& -c_{24} s_{13} s_{14} s_{34} e^{i(\delta_{14}-\delta_{13})}\\ \noalign {\vspace {5pt}} &{} + c_{13} \bigl(c_{23} c_{34} - s_{23} s_{24} s_{34} e^{i\delta_{24}} \bigr), \\ \noalign {\vspace {5pt}} V_{t'd} =& -s_{12} \bigl(-c_{23} c_{34} s_{24}e^{i\delta_{24}} + s_{23} s_{34} \bigr) \\ \noalign {\vspace {5pt}} &{} + c_{12} \bigl(-c_{13} c_{24} c_{34} s_{14}e^{i\delta_{14}}\\ \noalign {\vspace {5pt}} &{}- s_{13}e^{i\delta_{13}} \bigl(-c_{34} s_{23} s_{24}e^{i\delta_{24}} - c_{23} s_{34} \bigr) \bigr), \\ \noalign {\vspace {5pt}} V_{t's} =& c_{12} \bigl(-c_{23} c_{34} s_{24}e^{i\delta_{24}} + s_{23} s_{34} \bigr) \\ \noalign {\vspace {5pt}} &{} + s_{12} \bigl(-c_{13} c_{24} c_{34} s_{14}e^{i\delta_{14}} \\ \noalign {\vspace {5pt}} &{}- s_{13}e^{i\delta_{13}} \bigl(-c_{34} s_{23} s_{24}e^{i\delta_{24}} -c_{23} s_{34} \bigr) \bigr), \\ \noalign {\vspace {5pt}} V_{t'b} =& -c_{24} c_{34} s_{13} s_{14} e^{i(\delta_{14}-\delta_{13})}\\ \noalign {\vspace {5pt}} &{} + c_{13} \bigl(-c_{34} s_{23} s_{24}e^{i\delta_{24}} - c_{23} s_{34} \bigr). \end{array} $$
(20)

For θ 14=θ 24=θ 34=δ 14=δ 24=0 the SM4 CKM matrix assumes block-diagonal form with the SM3 CKM matrix in the first 3×3 block:

(21)

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, P., Rohrwild, J. & Wiebusch, M. Electroweak precision observables in a fourth generation model with general flavour structure. Eur. Phys. J. C 72, 2007 (2012). https://doi.org/10.1140/epjc/s10052-012-2007-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2007-0

Keywords

Navigation