
Eur. Phys. J. C (2012) 72:1960
DOI 10.1140/epjc/s10052-012-1960-y

Special Article - Tools for Experiment and Theory

The ATLAS data quality defect database system

T. Golling4, H.S. Hayward2, P.U.E. Onyisi1,a, H.J. Stelzer3, P. Waller2

1Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA
2Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX, UK
3Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
4Department of Physics, Yale University, New Haven, CT 06520, USA

Received: 27 October 2011 / Revised: 21 February 2012 / Published online: 3 April 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The ATLAS experiment at the Large Hadron Col-
lider has implemented a new system for recording infor-
mation on detector status and data quality, and for trans-
mitting this information to users performing physics anal-
ysis. This system revolves around the concept of “defects,”
which are well-defined, fine-grained, unambiguous occur-
rences affecting the quality of recorded data. The motiva-
tion, implementation, and operation of this system is de-
scribed.

1 Introduction

The ATLAS detector at the Large Hadron Collider (LHC)
[1] is a complex general purpose particle detector with ap-
proximately 100 million readout channels. In common with
many modern physics experiments it combines a large num-
ber of distinct subcomponents: it features nine major de-
tection technologies and a number of special-purpose sys-
tems. The data from specific components may not be usable
for physics studies for certain periods of time. For exam-
ple, a component may be at a non-nominal voltage, read-
out electronics may need to be reset, or the data may be
noisier than usual. These situations arise both from the stan-
dard operation procedure and from unexpected failures. Be-
cause not all physics studies rely on all components and
these issues are often transient, it is desirable to continue
data acquisition even in a degraded state. It is also possi-
ble for data to be badly calibrated or otherwise not handled
properly in the offline reconstruction, although possibly re-
coverable later using updated software or calibrations. The
ability to use more data by ignoring unnecessary compo-
nents is not a trivial effect: of 1.25 fb−1 of data recorded
by ATLAS between March and June 2011 at a center of

a e-mail: ponyisi@hep.uchicago.edu

mass energy of 7 TeV, analyses used between 1.04 and
1.21 fb−1 depending on which detector components were
required.

The state of the detector (or the “data quality”) must be
monitored, recorded, and propagated to analysts. This task
involves both core data management issues and human inter-
face concerns. The detection of many problems is not fully
automated and manual input is required. The opportunity for
incorrect data entry or wrong interpretation must be mini-
mized. The final decisions about what data to reject are of-
ten made long after the data are recorded, once the impact
of various problems is better understood, so maximum flex-
ibility should be a goal. Analysts should be able to access
the current best assessment of what data to use easily, while
still being able to perform detailed queries on detector status
when necessary.

A “flag”-based data quality assessment chain implemen-
tation [2], similar in concept to those used in previous and
current experiments (for example CMS [3]), was in place at
the start of ATLAS physics data collection. The main infor-
mation stored in this system was decisions about whether
the data recorded at a given time was usable for analysis.
This framework was used to produce the physics results of
the 2010 data period. However it became apparent that this
flag system was inflexible and hard to handle in practice. We
therefore replaced this system during the winter 2010–2011
LHC shutdown with a new one where the stored informa-
tion is the problems that might go into making a decision,
with the decisions on whether to use the data or not moved
to overlying (stored) logic. This seemingly simple change
has made the evaluation of data quality at ATLAS much
smoother; by tracking issues at a lower level than before,
the overall process has been simplified. In this paper we de-
scribe the features of the new “defect”-based system and the
improvements made over the flag system.

mailto:ponyisi@hep.uchicago.edu


Page 2 of 6 Eur. Phys. J. C (2012) 72:1960

2 The data quality assessment infrastructure
and process

In this section we describe aspects of ATLAS experimen-
tal operation relevant to data quality monitoring, the basic
database framework used for storing data quality informa-
tion, and the final output of the data quality evaluation pro-
cess.

The fundamental time granularity unit of detector config-
uration and status accounting in ATLAS is the “luminosity
block” (LB). These are sequential periods within a run as-
signed by the trigger hardware and embedded in the data
stream for each recorded collision. Their length is flexible
(typically one minute long for 2011 data) and certain ac-
tions, such as a trigger configuration change request, will
cause the start of a new luminosity block.

Time-dependent configuration, status, and calibration
(“conditions”) information for ATLAS is stored in Oracle
and SQLite databases using the COOL technology devel-
oped by the LCG project [4, 5]. A COOL “folder” consists
of a set of “channels” sharing a folder-specific “payload”
data structure, adapted to the information being stored (such
as voltages, beam position, trigger configuration, and so on).
Channels have a numeric ID, name, and description associ-
ated with them. Payloads can be stored on a channel-by-
channel basis for specified “intervals of validity” (IOVs).
The start and end of an IOV are 63-bit integers, which in AT-
LAS are used to encode (run, LB) pairs or timestamps. The
information stored in COOL databases may be versioned via
the “tag” mechanism: each tag acts as an independent set of
IOVs and payloads for the channels of a folder. Tags can be
“locked” to prevent their data from being altered and guaran-
tee reproducibility. Data quality information is entered first
in the special tag called HEAD before being copied to other
tags.

A typical ATLAS run [6] begins before protons are in-
jected into the LHC and ends after the beams have been
removed from the machine. Outside of the “stable beam”
period, when it is considered safe to run sensitive detectors
in data-taking mode, the sensitive detectors are operated in
a standby mode with reduced voltages and different readout
configurations.

During data taking, a number of online applications
record the status of the ATLAS detector in the conditions
database, including the trigger and data acquisition sys-
tem (TDAQ) [7, 8], the detector control system (DCS) [9],
and the online data quality monitoring framework (DQMF)
[10, 11]. The events from a specific set of triggers that
are useful for detector monitoring are fed into an “express
stream” which is promptly reconstructed in the ATLAS
Tier-0 farm [12]. As part of the reconstruction, monitoring
plots are produced and distributed, and automated checks

are performed on these plots by the offline DQMF [2]. Var-
ious detector experts and physicist “shifters” review the in-
formation available to them and provide data quality feed-
back. They also use information from the monitoring to im-
prove the calibrations used for the reconstruction of events
from all triggers that starts 36 hours after the end of a run.

Runs sharing similar conditions are grouped into ATLAS
run periods and subperiods. Subperiods may be as short as
one run, if for example there is a rapid evolution of the LHC
beam structure between runs. After a subperiod is closed,
it is given an additional review by detector experts, who
sign off on the data quality assessment, certifying that all the
runs have been inspected and all problems identified. At this
point the data are released for analysis. A similar process is
used after a reprocessing of previously-taken data with up-
dated software.

The main end product of the ATLAS data quality in-
frastructure is a set of “good run list” (GRL) files which
contain the list of luminosity blocks approved for analysis.
Several GRLs are produced, with different subdetectors re-
quired to be good depending on the needs of the correspond-
ing physics studies. These are the final products of the data
quality assessment process that are delivered to users, who
use the file recommended for their class of analysis. The files
use a common ATLAS XML interchange format, which is
also used for example by the file provenance metadata archi-
tecture and the event-level metadata database [13].

3 Data quality databases in 2010 operation

The data quality databases implemented for 2010 operation
[14] used a flag concept, where several different flag col-
ors were used to reflect detector subcomponent status: green
(ok), yellow (caution), red (bad), black (disabled), and grey
(undecided). There were O(100) components to be flagged
for every run. As the flags corresponded to specific sub-
components, the list of flags had very few changes after
its initial definition. Several COOL folders were used, each
containing flags from different sources (online and offline
DQMF monitoring, DCS monitoring [15], online and of-
fline physicist shifters). Information from the different fold-
ers was merged to form the final output, which was primar-
ily based on the flags set by the offline physicist experts and
shifters. Flags to be used for analysis were copied to dedi-
cated COOL tags.

This system was designed to store decisions on whether
data should be used in analysis, and the technical implemen-
tation reflects this principle. This design choice caused sev-
eral chronic issues:

1. All issues needed to be reduced within days to a limited
and unchanging set of possible flag and color combina-
tions, as the flags had detector subcomponent granular-



Eur. Phys. J. C (2012) 72:1960 Page 3 of 6

ity. This required immediate judgment of the likely im-
pact of newly-found problems on physics analysis. Sev-
eral times, further investigation revealed the initial evalu-
ation of the physics consequences to be incorrect, requir-
ing retroactive changes to the database.

2. Only storing the flag colors meant that a lot of useful in-
formation was not preserved. Without resorting to look-
ing at more basic sources (e.g. monitoring histograms),
detailed information was at best provided in the free-
form text comment field of the flag payload. The only
way to try to obtain lists of LBs subject to specific issues
was to perform a text search, with attendant complica-
tions.

3. The set of actual problems that corresponded to each flag
and color was not self-documenting. Analysis users were
largely unaware of what conditions caused data to be in-
cluded and excluded from the GRLs and this information
was not easy to discover. As multiple problems could re-
sult in the same flag color, a lot of training was necessary
to ensure that different shifters and experts applied uni-
form criteria; inevitable personnel change posed a long-
term consistency concern.

We emphasize these issues as we believe them to be inher-
ent to any data quality system which only stores immediate
determinations of whether data produced by a complex ap-
paratus is usable for any and all future purposes.

It was decided to develop and implement an alternative
system to address these difficulties.

4 Concepts of the defect database

A “defect” is a deviation from a nominal detector condition.
A defect is either present or absent for a given luminosity
block. An arbitrary number of defects may be defined.

A defect may be explicitly stored in a database or be com-
puted on retrieval. Defects whose values are stored in the
database are referred to as “primary defects” to distinguish
them from “virtual defects,” which are defined combinations
of primary defects or other virtual defects and only com-
puted on access. Primary defects are those that are input to
the system on a day-to-day basis, while virtual defect defi-
nitions evolve much more slowly.

A virtual defect is specified by the other defects (primary
or virtual) that it depends on. If any of its dependencies are
present, a virtual defect is present for a luminosity block
(the presence of primary and virtual defects has the same
semantics). Virtual defects are used to combine primary de-
fects into higher level concepts; for example, all muon trig-
ger defects that are serious enough to exclude data from use
are combined in a single virtual defect. The main purpose
of virtual defects is to simplify defect database queries and

to encapsulate the current best understanding of which pri-
mary defects correspond to problems where the correspond-
ing data should not be used in physics analyses. A demon-
stration of virtual defect logic is shown in Fig. 1 for a sim-
plified set of defects. In this example, the “Electron” virtual
defect combines the information of what luminosity blocks
should not be used for a physics analysis that uses electrons,
reflecting the underlying state of the detector represented
in the primary defects. A similar “virtual flag” concept ex-
isted for the flag system, but the combination logic was more
complicated as flags had more possible states.

The values of the primary defects and the definitions of
the virtual defects are stored and versioned with the COOL
tag mechanism. This ensures the reproducibility of database
queries, while allowing defect values and virtual defect def-
initions to evolve as necessary. Within a single COOL tag, a
virtual defect has a constant definition for all runs. The vir-
tual defect definitions can be updated independently of the
primary defect information as the understanding of the ef-
fect of detector problems improves. Because of this both the
relevant primary and virtual defect tags must be specified
during a retrieval.

We emphasize that a defect need not be so serious as to
cause data not to be used in analysis; it may serve as an issue
tracking mechanism, or be mainly of interest for checks of
possible systematic effects. It is also possible to ignore spe-
cific primary defects during the virtual defect computation,
again to facilitate studies of systematic uncertainties.

The defects carry some metadata with every entry, in-
cluding a comment, the username of the person or ID of
the automated process that filled the entry, and whether the
problem is likely to be recovered later.

Fig. 1 A demonstration of how information is propagated from pri-
mary to virtual defects. A simplified set of defects is shown, along
with their states for various luminosity blocks during a run. Shaded
boxes indicate luminosity blocks in which the primary or virtual defect
is reported to be present and corresponding events are to be rejected.
An analysis would depend only on the Electron virtual defect, only
referring to “deeper” defects if it had unusual requirements



Page 4 of 6 Eur. Phys. J. C (2012) 72:1960

The defect database concept addresses the concerns of
Sect. 3 as follows:

1. A new type of problem immediately gets a new defect.
Its effect on the GRLs is handled by the virtual defects,
which can be updated when a fuller picture of the impact
of the problem is obtained. It is not necessary to antic-
ipate all problems in advance, as defects can be added
as problems occur. As many defects can be created per
detector subcomponent as is felt to be necessary.

2. All the information that was used to make decisions with
the flag system is now explicitly available and easy to
query in a uniform manner with the defect system. In
particular, it is simple to determine the set of all data in
which a defect was present.

3. There is one defect for each class of problem. The mean-
ing of the defect is explained in the description field of
the defect; if this is done clearly enough there should be
no ambiguity.

These improvements are made possible by storing a com-
prehensive list of problems (defects) rather than only a re-
stricted set of decisions on the impact of those problems
(flags).

In addition, the defect database fixes some additional
implementation-specific issues with the flag system.

1. The stored information is binary (a defect is either
present or absent). Making a COOL tag of the defects to
be used to generate good run lists is as simple as copying
the current information in the HEAD tag. In the old flag
system, the meaning of yellow flags was somewhat am-
biguous, and before a good run list was generated from a
COOL tag all the yellow flags were changed to green or
red in a time-consuming resolution process that was hard
to trace after the fact.

2. The defect database is self-describing. It was an explicit
design requirement that the access application program-
ming interface (API) should not add additional informa-
tion beyond that obtained from the database. In the old
flag system, the list of data quality flags was hard coded
in several locations, and adding a channel required a new
ATLAS software release.

5 Implementation of the defect database

The defect database is implemented with two COOL folders,
one for the primary defect data and the other for the virtual
defect definitions. These two folders are versioned indepen-
dently but their COOL tags can be tied together with the “hi-
erarchical tag” mechanism, meaning only a single tag needs
to be presented to the analysis users.

As an optimization to cope with the large number of ex-
pected defect channels, the absence of any data for a de-
fect for an interval of validity is considered equivalent to

an absent defect. This optimization means that not only is
the database smaller, but the demands on the shifters are re-
duced as well since they do not have to explicitly mark that
a defect does not exist.

A single API, written in Python, has been created that
covers the vast majority of defect database creation, fill-
ing, query, and manipulation needs. The Python library is
implemented in 1.3 thousand lines of code (kloc). An ex-
tensive suite of tests using the nose package [16] is run
nightly to ensure that the library conforms to specifications.
As the specifications were clearly defined before the pack-
age was written, a test-driven process allowed rapid devel-
opment over a few days with confidence in code correct-
ness. The API enforces certain validity conditions for input
(e.g. virtual defects should only reference existing primary
and virtual defects) and is the only approved input method
for the defect database. For use in event reconstruction, the
standard ATLAS Athena [17] C++ interface library is used
to directly access the database.

As the user interface software needed to be rewritten to
handle the new defect system, we decided to take advan-
tage of new Web 2.0 technologies to provide a more intuitive
and responsive web application than the one previously used
for the flag database. The new shifter application consists of
0.4 kloc of backend Python code running in a CherryPy web
application server and 1 kloc of client-side Javascript us-
ing the Google Closure framework, replacing the 5.3 kloc of
PHP code comprising the old application.

The fact that the defect database is the authoritative
source of all information concerning defects allows the cre-
ation of a single administrative web interface for defect man-
agement. This interface allows defect creation, virtual de-
fect creation and definition editing, and tag creation and up-
dating. This application, hosted in the same server process
as the shifter application, consists of 0.4 kloc of backend
Python code and 0.8 kloc of client-side Javascript. There
was no similar interface for the flag system.

Several defects not corresponding to detector problems
have been added for bookkeeping purposes. A NOTCON-
SIDERED defect was initially set present for all luminosity
blocks, and is then set absent for the LBs comprising a run
when that run is reviewed by the data quality group. Due
to the convention that the absence of defects indicates that
there is no problem, a guard defect like this is necessary
to avoid including runs in GRLs that are not yet reviewed.
In addition, a set of UNCHECKED defects were created that
serve as workflow management markers. These defects are
all automatically set present when a data-taking run com-
pletes, and are unset by the shifter signoff procedure. Virtual
defects that depend on the UNCHECKED defects will there-
fore reject data until the shifters and experts have reviewed
it. The administrative interface will not permit the genera-
tion of official GRLs for a run period if any UNCHECKED
defects are present.



Eur. Phys. J. C (2012) 72:1960 Page 5 of 6

Fig. 2 A comparison of the information flow from data taking to
physics analysis for the flag system used in 2010 data (left) and the de-
fect system of 2011 data (right). The final output used for constructing
good run lists is in the bottom right in both cases. The defect system

is less complex than the flag system. This simplification is enabled
by storing information on identified problems instead of data usability
decisions made by different sources

When transitioning from the flag system, we wanted to
ensure minimal disruption to downstream consumers of data
quality information. The interface between the data quality
database and the users lies primarily in the GRL generation
mechanism. We created new virtual defects with the same
names as the old flags and grouped the new primary defects
under these virtual defects. The non-green flags from 2010
data were also imported as defects. We were largely able
to avoid changes to the GRL generation configurations and
retain the ability to generate GRLs for 2010 data with the
defect database.

A comparison of the information flow in the flag and de-
fect database systems is shown in Fig. 2. The flag system
had a number of different parallel COOL folders storing in-
formation from different sources, which were merged to de-
termine the final flags. These parallel folders were necessary
because the stored information was decisions on the usabil-
ity of data, and the decisions reached by different sources
were of markedly different quality. This is unnecessary for
the defect database, as the problem reflected in any given
defect should either be reliably automatically detected, or
require manual input. There is therefore only one produc-
tion instance of the defect database, filled by both people
and software, and no merging steps are required. Some of
the flag system COOL folders are still being filled, but now
have no direct impact on GRL creation. As more confi-
dence is gained with automatic detection of various prob-
lems, the relevant information is written directly into the de-
fect database as well (implemented so far for portions of the
DCS and offline DQMF information).

6 Operation of the defect database

The defect database was used for the 2011 running. Integra-
tion into the data quality assessment workflow was smooth
and user feedback very positive. As anticipated, new detec-
tor problems are entered into the database immediately, al-
lowing their physics impact to be studied at a more relaxed

Fig. 3 A histogram of the mean number of occurrences (IOVs)
recorded for each defect in runs available for physics analysis at 7 TeV
center of mass energy between March and June 2011. The peak near
2 occurrences per run is due to detector components being in standby
at the start and end of runs. “Intolerable” defects are those which will
cause at least one analysis to reject the affected data

pace while maintaining clear documentation of the affected
data. Anecdotal evidence suggests that the frequency of user
input errors has been reduced substantially, and that the re-
moval of the resolution phase when preparing COOL tags
for analysis has reduced turnaround time allowing data anal-
ysis to begin sooner. Care must be taken to avoid creating
duplicate defects; this is achieved by restricting defect cre-
ation to a small set of experts.

As of the accumulation of 1.25 fb−1 of data in June 2011,
there were 619 defects and 172 virtual defects defined. In-
cluding all COOL tags, the database contains approximately
33 MB of data, which promises good scalability for the fu-
ture. Figure 3 shows the mean number of intervals of validity
per run (of whatever length) defined for primary defects in
runs available for physics analysis at 7 TeV center of mass
energy between March and June 2011; this corresponds to
the number of rows that are inserted into the database. Most
defects are rare and occur much less often than once per run.
The cluster of entries around 2 IOVs per run comes from



Page 6 of 6 Eur. Phys. J. C (2012) 72:1960

the defects that are set when detector components are in a
standby state at the start and end of a run. There are a few de-
fects that occur quite often, which reflect frequent but short
(i.e. single LB) detector problems.

Querying the database is quite fast. For example, query-
ing all defects and virtual defects for the 1.25 fb−1 of data
recorded through June 2011 using the Python API takes less
than 40 seconds, including the virtual defect computation.
A single virtual defect, such as the barrel electron quality,
takes under five seconds. To retrieve the full set of primary
defects takes under a second, including database connection
setup time.

7 Conclusion

Optimal use of the ATLAS data for physics analysis requires
stringent tracking and documentation of detector problems.
We have implemented a “defect database” system that al-
lows straightforward entry and retrieval of specific types of
problems, as well as combinatoric logic to determine which
data should not be used for analysis due to specified issues.
We have demonstrated that such relatively low-level issue
tracking is practical even for an experiment of the complex-
ity of ATLAS, and is in fact more transparent, more flexible,
and easier to manage than storing only coarse decisions on
the usability of data.

Acknowledgements We thank our colleagues in ATLAS for their
suggestions, encouragement, and cooperation during the construction

of the defect system. This work was supported by the U.S. National
Science Foundation and the U.K. Science and Technology Facilities
Council. P.U.E.O. was partly supported by a Fermi Fellowship from
the University of Chicago.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

References

1. G. Aad et al. (ATLAS Collaboration), J. Instrum. 3, S08003
(2008)

2. J. Adelman et al., J. Phys. Conf. Ser. 219, 042018 (2010)
3. L. Tuura et al., J. Phys. Conf. Ser. 219, 072020 (2010)
4. A. Valassi et al., https://twiki.cern.ch/twiki/bin/view/Persistency/

Cool
5. M. Verducci, J. Phys. Conf. Ser. 119, 042031 (2008)
6. P. Onyisi, (ATLAS Collaboration), PoS ICHEP2010, 495 (2010)
7. ATLAS Collaboration, CERN-LHCC-1998-014 (1998)
8. ATLAS Collaboration, CERN-LHCC-2003-022 (2003)
9. A. Barriuso Poy et al., J. Instrum. 3, P05006 (2008)

10. S. Kolos et al., J. Phys. Conf. Ser. 119, 022033 (2008)
11. C. Cuenca Almenar et al., Nucl. Phys. B, Proc. Suppl. 215, 304

(2011)
12. M. Elsing et al., J. Phys. Conf. Ser. 219, 072011 (2010)
13. E.J. Gallas et al., J. Phys. Conf. Ser. 219, 042009 (2010)
14. P. Waller (ATLAS Collaboration), PoS ICHEP2010, 511 (2010)
15. G. Aad et al., J. Phys. Conf. Ser. 219, 022037 (2010)
16. J. Pellerin et al., http://readthedocs.org/docs/nose/
17. P. Calafiura et al., in Proceedings of the Conference on Computing

in High-Energy Physics (CHEP ’04), Interlaken, Switzerland, 27
Sep–1 Oct 2004

https://twiki.cern.ch/twiki/bin/view/Persistency/Cool
https://twiki.cern.ch/twiki/bin/view/Persistency/Cool
http://readthedocs.org/docs/nose/

	The ATLAS data quality defect database system
	Introduction
	The data quality assessment infrastructure and process
	Data quality databases in 2010 operation
	Concepts of the defect database
	Implementation of the defect database
	Operation of the defect database
	Conclusion
	Acknowledgements
	References


