Skip to main content
Log in

The k-essence scalar field in the context of Supernova Ia observations

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A k-essence scalar field model having (non-canonical) Lagrangian of the form L=−V(ϕ)F(X) where \(X=\frac{1}{2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi\) with constant V(ϕ) is shown to be consistent with luminosity distance–redshift data observed for type Ia Supernova. For constant V(ϕ), F(X) satisfies a scaling relation which is used to set up a differential equation involving the Hubble parameter H, the scale factor a and the k-essence field ϕ. H and a are extracted from SNe Ia data and using the differential equation the time dependence of the field ϕ is found to be: ϕ(t)∼λ 0+λ 1 t+λ 2 t 2. The constants λ i have been determined. The time dependence is similar to that of the quintessence scalar field (having canonical kinetic energy) responsible for homogeneous inflation. Furthermore, the scaling relation and the obtained time dependence of the field ϕ are used to determine the X-dependence of the function F(X).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  3. A.G. Riess et al., Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  4. A.G. Riess et al., Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  5. P. Astier et al., Astron. Astrophys. 447, 31 (2006)

    Article  ADS  Google Scholar 

  6. W.M. Wood-Vasey et al., Astrophys. J. 666, 694 (2007)

    Article  ADS  Google Scholar 

  7. M. Hicken et al., Astrophys. J. 700, 1097 (2009)

    Article  ADS  Google Scholar 

  8. M. Kowalski et al., Astrophys. J. 686, 749 (2008)

    Article  ADS  Google Scholar 

  9. D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  10. S. Cole et al., Mon. Not. R. Astron. Soc. 362, 505 (2005)

    Article  ADS  Google Scholar 

  11. G. Huetsi, Astron. Astrophys. 449, 891 (2006)

    Article  ADS  Google Scholar 

  12. W.J. Percival et al., Astrophys. J. 657, 51 (2007)

    Article  ADS  Google Scholar 

  13. G. Hinshaw et al., Astrophys. J. Suppl. 180, 225 (2009)

    Article  ADS  Google Scholar 

  14. E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011)

    Article  ADS  Google Scholar 

  15. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Y. Fujii, Phys. Rev. D 26, 2580 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  17. R.D. Peccei, J. Sola, C. Wetterich, Phys. Lett. B 195, 183 (1987)

    Article  ADS  Google Scholar 

  18. L.H. Ford, Phys. Rev. D 35, 2339 (1987)

    Article  ADS  Google Scholar 

  19. C. Wetterich, Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  20. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  21. Y. Fujii, T. Nishioka, Phys. Rev. D 42, 361 (1990)

    Article  ADS  Google Scholar 

  22. T. Chiba, N. Sugiyama, T. Nakamura, Mon. Not. R. Astron. Soc. 289 (1997)

  23. P.G. Ferreira, M. Joyce, Phys. Rev. Lett. 79, 4740 (1997)

    Article  ADS  Google Scholar 

  24. P.G. Ferreira, M. Joyce, Phys. Rev. D 58, 023503 (1998)

    Article  ADS  Google Scholar 

  25. R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  26. S.M. Carroll, Phys. Rev. Lett. 81, 3067 (1998)

    Article  ADS  Google Scholar 

  27. E.J. Copeland, A.R. Liddle, D. Wands, Phys. Rev. D 57, 4686 (1998)

    Article  ADS  Google Scholar 

  28. I. Zlatev, L.M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

  29. P.J. Steinhardt, L.M. Wang, I. Zlatev, Phys. Rev. D 59, 123504 (1999)

    Article  ADS  Google Scholar 

  30. A. Hebecker, C. Wetterich, Phys. Rev. Lett. 85, 3339 (2000)

    Article  ADS  Google Scholar 

  31. A. Hebecker, C. Wetterich, Phys. Lett. B 497, 281 (2001)

    Article  ADS  MATH  Google Scholar 

  32. C. Armendariz-Picon, T. Damour, V. Mukhanov, Phys. Lett. B 458, 209 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. C. Armendariz-Picon, V. Mukhanov, P.J. Steinhardt, Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  34. C. Armendariz-Picon, V. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  35. C. Armendariz-Picon, E.A. Lim, J. Cosmol. Astropart. Phys. 0508, 007 (2005)

    Article  ADS  Google Scholar 

  36. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000)

    Article  ADS  Google Scholar 

  37. N. Arkani-Hamed, H.C. Cheng, M.A. Luty, S. Mukohyama, J. High Energy Phys. 05, 074 (2004)

    Article  MathSciNet  Google Scholar 

  38. N. Arkani-Hamed, H.C. Cheng, M.A. Luty, S. Mukohyama, J. Cosmol. Astropart. Phys. 0404, 001 (2004)

    Article  ADS  Google Scholar 

  39. R.R. Caldwell, Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  40. S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. S. Capozziello, V.F. Cardone, S. Carloni, A. Troisi, Int. J. Mod. Phys. D 12, 1969 (2003)

    Article  ADS  Google Scholar 

  42. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  43. L. Amendola, Phys. Rev. D 60, 043501 (1999)

    Article  ADS  Google Scholar 

  44. J.P. Uzan, Phys. Rev. D 59, 123510 (1999)

    Article  ADS  Google Scholar 

  45. T. Chiba, Phys. Rev. D 60, 083508 (1999)

    Article  ADS  Google Scholar 

  46. N. Bartolo, M. Pietroni, Phys. Rev. D 61, 023518 (2000)

    Article  ADS  Google Scholar 

  47. F. Perrotta, C. Baccigalupi, S. Matarrese, Phys. Rev. D 61, 023507 (2000)

    Article  ADS  Google Scholar 

  48. G.R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. V. Sahni, Y. Shtanov, J. Cosmol. Astropart. Phys. 0311, 014 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  50. M. Born, L. Infeld, Proc. R. Soc. Lond. A 144, 425 (1934)

    Article  ADS  Google Scholar 

  51. P.A.M. Dirac, Proc. R. Soc. Lond. A 268, 57 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. J. Callan, G. Curtis, J.M. Maldacena, Nucl. Phys. B 513, 198 (1998)

    Article  ADS  MATH  Google Scholar 

  53. G.W. Gibbons, Nucl. Phys. B 514, 603 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. G.W. Gibbons, Rev. Mex. Fis. 49S1 19 (2003)

    Google Scholar 

  55. A. Sen, J. High Energy Phys. 04, 048 (2002)

    Article  ADS  Google Scholar 

  56. R.J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004)

    Article  ADS  Google Scholar 

  57. L.P. Chimento, Phys. Rev. D 69, 123517 (2004). astro-ph/0311613

    Article  MathSciNet  ADS  Google Scholar 

  58. E. Elizalde, S. Nojiri, S.D. Odintsov, D. Saez-Gomez, Eur. Phys. J. C 70, 351–361 (2010). arXiv:1006.3387

    Article  ADS  Google Scholar 

  59. S. Nojiri, S.D. Odintsov, arXiv:1008.4275

  60. E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastian, S. Zerbini, Phys. Rev. D 83, 086006 (2011). arXiv:1012.2280

    Article  ADS  Google Scholar 

  61. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  62. V.D. Barger, D. Marfatia, Phys. Lett. B 498, 67 (2001). arXiv:astro-ph/0009256

    Article  ADS  Google Scholar 

  63. A.A. Sen, J. Cosmol. Astropart. Phys. 0603, 010 (2006)

    Article  ADS  Google Scholar 

  64. S. Tsujikawa, arXiv:hep-ph/0304257

  65. V. Mukhanov, Physical Foundations of Cosmology (Cambridge, 2005)

  66. T. Padmanabhan, T.R. Choudhury, Mon. Not. R. Astron. Soc. 344, 823 (2003)

    Article  ADS  Google Scholar 

  67. T.M. Davis et al., Astrophys. J. 666, 716 (2007)

    Article  ADS  Google Scholar 

  68. R. Kessler et al., Astrophys. J. Suppl. 185, 32 (2009)

    Article  ADS  Google Scholar 

  69. R. Amanullah et al., Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  70. L. Xu, Y. Wang, J. Cosmol. Astropart. Phys. 1006, 002 (2010)

    Article  ADS  Google Scholar 

  71. R.G. Abraham et al., Astron. J. 127, 2455 (2004)

    Article  ADS  Google Scholar 

  72. E. Gaztanaga, A. Cabre, L. Hui, Mon. Not. R. Astron. Soc. 399, 166 (2009)

    Article  ADS  Google Scholar 

  73. A.G. Riess et al., Astrophys. J. 699, 539 (2009)

    Article  ADS  Google Scholar 

  74. D. Stern, R. Jimenez, L. Verde, M. Kamionkauski, S.A. Stanford, J. Cosmol. Astropart. Phys. 1002, 008 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, A., Gangopadhyay, D. & Moulik, A. The k-essence scalar field in the context of Supernova Ia observations. Eur. Phys. J. C 72, 1943 (2012). https://doi.org/10.1140/epjc/s10052-012-1943-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1943-z

Keywords

Navigation