Skip to main content
Log in

Accretion of new variable modified Chaplygin gas and generalized cosmic Chaplygin gas onto Schwarzschild and Kerr–Newman black holes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this work, we have studied accretion of the dark energies in new variable modified Chaplygin gas (NVMCG) and generalized cosmic Chaplygin gas (GCCG) models onto Schwarzschild and Kerr–Newman black holes. We find the expression of the critical four velocity component which gradually decreases for the fluid flow towards the Schwarzschild as well as the Kerr–Newman black hole. We also find the expression for the change of mass of the black hole in both cases. For the Kerr–Newman black hole, which is rotating and charged, we calculate the specific angular momentum and total angular momentum. We showed that in both cases, due to accretion of dark energy, the mass of the black hole increases and angular momentum increases in the case of a Kerr–Newman black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.A. Bachall, J.P. Ostriker, S. Perlmutter, P.J. Steinhardt, Science 284, 1481 (1999)

    Article  ADS  Google Scholar 

  2. S.J. Perlmutter et al., Bull. Am. Astron. Soc. 29, 1351 (1997)

    ADS  Google Scholar 

  3. S.J. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  4. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  5. C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003)

    Article  ADS  Google Scholar 

  6. S.W. Allen et al., Mon. Not. R. Astron. Soc. 353, 457 (2004)

    Article  ADS  Google Scholar 

  7. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. A 9, 373 (2000)

    ADS  Google Scholar 

  8. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. T. Padmanabhan, Phys. Rep. 380, 235 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. C. Armendariz-Picon et al., Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  12. A. Kamenshchik et al., Phys. Lett. B 511, 265 (2001)

    ADS  MATH  Google Scholar 

  13. U. Debnath, A. Banerjee, S. Chakraborty, Class. Quantum Gravity 21, 5609 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A. Sen, J. High Energy Phys. 065, 0207 (2002)

    Google Scholar 

  15. J. Martin, M. Yamaguchi, Phys. Rev. D 77, 103508 (2008)

    ADS  Google Scholar 

  16. V. Gorini, A. Kamenshchik, U. Moschella, Phys. Rev. D 67, 063509 (2003)

    ADS  Google Scholar 

  17. U. Alam, V. Sahni, T.D. Saini, A.A. Starobinsky, Mon. Not. R. Astron. Soc. 344, 1057 (2003)

    Article  ADS  Google Scholar 

  18. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

    ADS  Google Scholar 

  19. H.B. Benaoum, hep-th/0205140

  20. V. Sahni, T.D. Saini, A.A. Starobinsky, U. Alam, JETP Lett. 77, 201 (2003)

    Article  ADS  Google Scholar 

  21. Z.K. Guo, Y.Z. Zhang, Phys. Lett. B 645, 326 (2007)

    ADS  Google Scholar 

  22. U. Debnath, Astrophys. Space Sci. 312, 295 (2007)

    Article  ADS  Google Scholar 

  23. W. Chakraborty, U. Debnath, Gravit. Cosmol. 16, 223 (2010)

    Article  ADS  MATH  Google Scholar 

  24. P.F. González-Diaz, Phys. Rev. D 68, 021303(R) (2003)

    ADS  Google Scholar 

  25. W. Chakraborty, U. Debnath, S. Chakraborty, Gravit. Cosmol. 13, 293 (2007)

    MathSciNet  ADS  MATH  Google Scholar 

  26. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  27. B. McInnes, J. High Energy Phys. 0208, 029 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Bouhmadi-Lopez, J.A.J. Madrid, J. Cosmol. Astropart. Phys. 0505, 005 (2005)

    Article  ADS  Google Scholar 

  29. U. Alam, V. Sahni, T.D. Saini, A.A. Starobinsky, Mon. Not. R. Astron. Soc. 354, 275 (2004)

    Article  ADS  Google Scholar 

  30. E. Babichev et al., Phys. Rev. Lett. 93, 021102 (2004)

    Article  ADS  Google Scholar 

  31. E. Babichev, V. Dokuchaev, Y. Eroshenko, J. Exp. Theor. Phys. 100, 528–538 (2005)

    Article  ADS  Google Scholar 

  32. M. Jamil, Eur. Phys. J. C 62, 609 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. J.A. Jiménez Madrid, P.F. González-Díaz, Gravit. Cosmol. 14, 213 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. F.C. Michel, Astrophys. Space Sci. 15, 153 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjal Debnath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadra, J., Debnath, U. Accretion of new variable modified Chaplygin gas and generalized cosmic Chaplygin gas onto Schwarzschild and Kerr–Newman black holes. Eur. Phys. J. C 72, 1912 (2012). https://doi.org/10.1140/epjc/s10052-012-1912-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1912-6

Keywords

Navigation