Skip to main content
Log in

Generalized self-similar scalar-tensor theories

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In order to analyze how the gravitational constant, G, and the cosmological constant, Λ, may vary we study through symmetry principles the form of the functions in the generalized scalar-tensor theories under the self-similar hypothesis. The results obtained are absolutely general and valid for all the Bianchi models and the flat FRW one. We study the concrete example of the Kantowski–Sachs model finding some new exact self-similar solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Bernadis et al., Nature 404, 955 (2000)

    Article  ADS  Google Scholar 

  2. S. Hanany et al., Astrophys. J. Lett. 545, L5 (2000)

    Article  ADS  Google Scholar 

  3. A. Balbi et al., Astrophys. J. Lett. 545, L1–L4 (2000)

    Article  ADS  Google Scholar 

  4. S. Perlmutter et al., Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  5. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  6. A. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  7. P.M. Garnavich et al., Astrophys. J. Lett. 493, L53 (1998)

    Article  ADS  Google Scholar 

  8. C.L. Bennett et al., Astrophys. J. Suppl. Ser. 148, 1 (2003)

    Article  ADS  Google Scholar 

  9. D.N. Spergel, Astrophys. J. Suppl. Ser. 148, 175 (2003)

    Article  ADS  Google Scholar 

  10. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  11. A. Benoit et al., Astron. Astrophys. 399, L25 (2003)

    Article  ADS  Google Scholar 

  12. A. Benoit et al., Astron. Astrophys. 399, L19 (2003)

    Article  ADS  Google Scholar 

  13. B. Wang, Y.G. Gong, R.K. Su, Phys. Lett. B 605, 9 (2005)

    Article  ADS  Google Scholar 

  14. S. D’Innocenti et al., Astron. Astrophys. 312, 345 (1996)

    Google Scholar 

  15. K. Umezu et al., Phys. Rev. D 72, 044010 (2005)

    Article  ADS  Google Scholar 

  16. G.S. Bisnovatyi-Kogan, Int. J. Mod. Phys. D 15, 1047 (2006)

    Article  ADS  MATH  Google Scholar 

  17. T. Damour et al., Phys. Rev. Lett. 61, 1151 (1988)

    Article  ADS  Google Scholar 

  18. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  19. J.-P. Uzan, arXiv:1009.5514 [astro-ph.CO]

  20. C. Wetterich, Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  21. B. Ratra, J. Peebles, Phys. Rev. D 37, 321 (1988)

    Article  Google Scholar 

  22. T. Chiba et al., Phys. Rev. D 62, 023511 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  23. P. Brax et al., Phys. Rev. D 81, 103524 (2010)

    Article  ADS  Google Scholar 

  24. P. Brax et al., Phys. Rev. D 70, 123518 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  26. L. Amendola, S. Tsujikawa, Dark Energy. Theory and Observations (CUP, Cambridge, 2010)

    MATH  Google Scholar 

  27. P. Jordan, Schwerkraft und Weltall (Vieweg, Braunschweig, 1955)

    MATH  Google Scholar 

  28. C.H. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. P.G. Bergmann, Int. J. Theor. Phys. 1, 25 (1968)

    Article  Google Scholar 

  30. K. Nordtverdt, J. R. Astron. J. 161, 1059 (1970)

    ADS  Google Scholar 

  31. R.T. Wagoner, Phys. Rev. D 1, 3209 (1970)

    Article  ADS  Google Scholar 

  32. V. Faraoni, Cosmology in Scalar-Tensor Gravity (Kluwer Academic, Dordrecht, 2004)

    MATH  Google Scholar 

  33. Y. Fujii, K. Maeda, The Scalar-Tensor Theory of Gravitation (CUP, Cambridge, 2003)

    MATH  Google Scholar 

  34. C.M. Will, Theory and Experiments in Gravitational Physics, revised edn. (CUP, Cambridge, 1993)

    Book  Google Scholar 

  35. D. La, P.J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989)

    Article  ADS  Google Scholar 

  36. B. Boisseau et al., Phys. Rev. Lett. 85, 2236 (2000)

    Article  ADS  Google Scholar 

  37. S. Lee, J. Cosmol. Astropart. Phys. 03, 021 (2011)

    Article  ADS  Google Scholar 

  38. A. De Felie et al., J. Cosmol. Astropart. Phys. 1007, 024 (2010)

    Article  Google Scholar 

  39. B. Boisseau, Phys. Rev. D 83, 043521 (2011)

    Article  ADS  Google Scholar 

  40. S. Nojiri, S.D. Odintsov, J. Phys. Conf. Ser. 66, 012005 (2007)

    Article  ADS  Google Scholar 

  41. K. Rosquist, R. Jantzen, Class. Quantum Gravity 2, L129 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. A.A. Coley, Dynamical Systems and Cosmology (Kluwer Academic, Dordrecht, 2003)

    MATH  Google Scholar 

  43. A. Zee, Phys. Rev. Lett. 42, 417 (1979)

    Article  ADS  Google Scholar 

  44. S. Nojiri, S.D. Odintsov, Gen. Relativ. Gravit. 38, 1285 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. S. Capoziello, S. Nojiri, S.D. Odintsov, Phys. Lett. B 632, 597 (2006)

    Article  ADS  Google Scholar 

  46. M. Sharif, Int. J. Mod. Phys. D 14, 1675–1684 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. J. Carot, J. da Costa, L.R. Vaz, J. Math. Phys. 35, 4832 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. G.S. Hall, I. Roy, L.R. Vaz, Gen. Relativ. Gravit. 28, 299 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. J. Carot, J. da Costa, in Procs. of the 6th Canadian Conf. on General Relativity and Relativistic Astrophysics. Fields Inst. Commun., vol. 15 (Am. Math. Soc., Providence, 1997), p. 179

    Google Scholar 

  50. M. Sharif, Nuovo Cimento B 116, 673 (2001)

    MathSciNet  ADS  Google Scholar 

  51. M. Sharif, Astrophys. Space Sci. 278, 447 (2001)

    Article  ADS  MATH  Google Scholar 

  52. M. Tsamparlis, P.S. Apostolopoulos, Gen. Relativ. Gravit. 36, 47 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. J.A. Belinchón, Gravit. Cosmol. 15, 306–316 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. N.H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations (Wiley, New York, 1999)

    MATH  Google Scholar 

  55. G.W. Bluman, S.c. Anco, Symmetry and Integral Methods for Differential Equations (Springer, Berlin, 2002)

    Google Scholar 

  56. B.M. Barker, Astron. J. 219, 5 (1978)

    ADS  Google Scholar 

  57. J.A. Belinchón, arXiv:1109.2880 [gr-qc]

  58. J.A. Belinchón, Astrophys. Space Sci. (2011). doi:10.1007/s10509-011-0954-9. arXiv:1110.2775 [gr-qc]

    Google Scholar 

  59. C.B. Collins, J. Math. Phys. 18, 2116 (1977)

    Article  ADS  Google Scholar 

  60. J.A. Belinchón, Class. Quantum Gravity 26, 175003 (2009)

    Article  ADS  Google Scholar 

  61. B. Bertotti, L. Iess, P. Tortora, Nature (London) 425, 374 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Belinchón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belinchón, J.A. Generalized self-similar scalar-tensor theories. Eur. Phys. J. C 72, 1866 (2012). https://doi.org/10.1140/epjc/s10052-012-1866-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1866-8

Keywords

Navigation