Skip to main content
Log in

Minimal supersymmetric technicolor

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We introduce novel extensions of the Standard Model featuring a supersymmetric technicolor sector. First we consider \(\mathcal{N}=4 \) Super Yang–Mills which breaks to \(\mathcal{N}=1\) via the electroweak (EW) interactions and coupling to the MSSM. This is a well defined, economical and calculable extension of the SM involving the smallest number of fields. It constitutes an explicit example of a natural supersymmetric conformal extension of the Standard Model featuring a well defined connection to string theory. It allows us to interpolate, depending on how we break the underlying supersymmetry, between unparticle physics and Minimal Walking Technicolor. As a second alternative we consider other \(\mathcal{N} =1\) extensions of the Minimal Walking Technicolor model. The new models allow all the standard model matter fields to acquire a mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Sannino, Acta Phys. Pol. B 40, 3533 (2009). arXiv:0911.0931 [hep-ph]

    Google Scholar 

  2. F. Sannino, arXiv:0804.0182 [hep-ph]

  3. C.T. Hill, E.H. Simmons, Phys. Rep. 381, 235 (2003). Erratum-ibid. 390, 553 (2004). arXiv:hep-ph/0203079

    Article  ADS  Google Scholar 

  4. F. Sannino, K. Tuominen, Phys. Rev. D 71, 051901 (2005). arXiv:hep-ph/0405209

    Article  ADS  Google Scholar 

  5. D.D. Dietrich, F. Sannino, K. Tuominen, Phys. Rev. D 72, 055001 (2005). arXiv:hep-ph/0505059

    Article  ADS  Google Scholar 

  6. M. Dine, W. Fischler, M. Srednicki, Nucl. Phys. B 189, 575 (1981)

    Article  ADS  Google Scholar 

  7. N. Evans, F. Sannino, arXiv:hep-ph/0512080

  8. E. Witten, Phys. Lett. B 117, 324 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  9. D.D. Dietrich, M. Jarvinen, Phys. Rev. D 79, 057903 (2009). arXiv:0901.3528 [hep-ph]

    Article  ADS  Google Scholar 

  10. H. Georgi, Phys. Rev. Lett. 98, 221601 (2007). arXiv:hep-ph/0703260

    Article  ADS  Google Scholar 

  11. H. Georgi, Phys. Lett. B 650, 275 (2007). arXiv:0704.2457 [hep-ph]

    Article  ADS  Google Scholar 

  12. S.P. Martin, arXiv:hep-ph/9709356

  13. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). [Int. J. Theor. Phys. 38, 1113 (1999)]. arXiv:hep-th/9711200

    MATH  ADS  MathSciNet  Google Scholar 

  14. M. Antola, M. Heikinheimo, F. Sannino, K. Tuominen, J. High Energy Phys. 1003, 050 (2010). arXiv:0910.3681 [hep-ph]

    Article  ADS  Google Scholar 

  15. A.R. Zerwekh, Mod. Phys. Lett. A 25, 423 (2010). arXiv:0907.4690 [hep-ph]

    Article  MATH  ADS  Google Scholar 

  16. E.H. Simmons, Nucl. Phys. B 312, 253 (1989)

    Article  ADS  Google Scholar 

  17. A. Kagan, S. Samuel, Phys. Lett. B 270, 37 (1991)

    Article  ADS  Google Scholar 

  18. C.D. Carone, E.H. Simmons, Nucl. Phys. B 397, 591 (1993). arXiv:hep-ph/9207273

    Article  ADS  Google Scholar 

  19. C.D. Carone, E.H. Simmons, Y. Su, Phys. Lett. B 344, 287 (1995). arXiv:hep-ph/9410242

    Article  ADS  Google Scholar 

  20. V. Hemmige, E.H. Simmons, Phys. Lett. B 518, 72 (2001). arXiv:hep-ph/0107117

    Article  ADS  Google Scholar 

  21. C.D. Carone, J. Erlich, J.A. Tan, Phys. Rev. D 75, 075005 (2007). arXiv:hep-ph/0612242

    Article  ADS  Google Scholar 

  22. R.S. Chivukula, A.G. Cohen, K.D. Lane, Nucl. Phys. B 343, 554 (1990)

    Article  ADS  Google Scholar 

  23. S. Samuel, Nucl. Phys. B 347, 625 (1990)

    Article  ADS  Google Scholar 

  24. M. Dine, A. Kagan, S. Samuel, Phys. Lett. B 243, 250 (1990)

    Article  ADS  Google Scholar 

  25. A. Kagan, S. Samuel, Phys. Lett. B 252, 605 (1990)

    Article  ADS  Google Scholar 

  26. A. Kagan, Published in Johns Hopkins Workshop (1991), pp. 217–242

  27. B.A. Dobrescu, Nucl. Phys. B 449, 462 (1995). arXiv:hep-ph/9504399

    Article  ADS  Google Scholar 

  28. B.A. Dobrescu, E.H. Simmons, Phys. Rev. D 59, 015014 (1999). arXiv:hep-ph/9807469

    Article  ADS  Google Scholar 

  29. R.S. Chivukula, N.D. Christensen, B. Coleppa, E.H. Simmons, Phys. Rev. D 80, 035011 (2009). arXiv:0906.5567 [hep-ph]

    Article  ADS  Google Scholar 

  30. M. Antola, S. Di Chiara, F. Sannino, K. Tuominen, arXiv:1009.1624 [hep-ph]

  31. M. Petrini, Phys. Lett. B 404, 66 (1997). arXiv:hep-th/9704004

    Article  ADS  MathSciNet  Google Scholar 

  32. O. Antipin, M. Heikinheimo, K. Tuominen, J. High Energy Phys. 0910, 018 (2009). arXiv:0905.0622 [hep-ph]

    Article  ADS  Google Scholar 

  33. M.T. Frandsen, I. Masina, F. Sannino, Phys. Rev. D 81, 035010 (2010). arXiv:0905.1331 [hep-ph]

    Article  ADS  Google Scholar 

  34. O. Antipin, M. Heikinheimo, K. Tuominen, J. High Energy Phys. 1007, 052 (2010). arXiv:1002.1872 [hep-ph]

    Article  ADS  Google Scholar 

  35. F. Sannino, R. Zwicky, Phys. Rev. D 79, 015016 (2009). arXiv:0810.2686 [hep-ph]

    Article  ADS  Google Scholar 

  36. B.A. Dobrescu, Phys. Rev. Lett. 94, 151802 (2005). arXiv:hep-ph/0411004

    Article  ADS  Google Scholar 

  37. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  38. M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)

    Article  ADS  Google Scholar 

  39. F. Bursa, L. Del Debbio, L. Keegan, C. Pica, T. Pickup, Phys. Lett. B 696, 374 (2011). arXiv:1007.3067 [hep-ph]

    Article  ADS  Google Scholar 

  40. S. Catterall, L. Del Debbio, J. Giedt, L. Keegan, PoS LATTICE2010, 057 (2010). arXiv:1010.5909 [hep-ph]

    Google Scholar 

  41. O. Antipin, K. Tuominen, arXiv:0912.0674 [hep-ph]

  42. C. Pica, F. Sannino, arXiv:1011.5917 [hep-ph]

  43. C. Pica, F. Sannino, arXiv:1011.3832 [hep-ph]

  44. H.S. Fukano, F. Sannino, Phys. Rev. D 82, 035021 (2010). arXiv:1005.3340 [hep-ph]

    Article  ADS  Google Scholar 

  45. A. Strumia, arXiv:1101.2195 [hep-ph]

  46. V. Khachatryan et al. (CMS Collaboration), arXiv:1101.1628 [hep-ex]

  47. T.A. Collaboration, arXiv:1102.5290 [hep-ex]

  48. R. Foadi, M.T. Frandsen, T.A. Ryttov, F. Sannino, Phys. Rev. D 76, 055005 (2007). arXiv:0706.1696 [hep-ph]

    Article  ADS  Google Scholar 

  49. K. Nakamura et al. (Particle Data Group Collaboration), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  50. H.J. He, N. Polonsky, S.f. Su, Phys. Rev. D 64, 053004 (2001). arXiv:hep-ph/0102144

    Article  ADS  Google Scholar 

  51. S. Catterall, J. High Energy Phys. 0506, 027 (2005). arXiv:hep-lat/0503036

    Article  ADS  MathSciNet  Google Scholar 

  52. J.W. Elliott, J. Giedt, G.D. Moore, Phys. Rev. D 78, 081701 (2008). arXiv:0806.0013 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  53. J. Giedt, R. Brower, S. Catterall, G.T. Fleming, P. Vranas, Phys. Rev. D 79, 025015 (2009). arXiv:0810.5746 [hep-lat]

    Article  ADS  Google Scholar 

  54. N. Dorey, S.P. Kumar, J. High Energy Phys. 0002, 006 (2000). arXiv:hep-th/0001103

    Article  ADS  MathSciNet  Google Scholar 

  55. J. Wess, J. Bagger, Princeton Univ. Press, Princeton (1992), 259 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimmo Tuominen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antola, M., Di Chiara, S., Sannino, F. et al. Minimal supersymmetric technicolor. Eur. Phys. J. C 71, 1784 (2011). https://doi.org/10.1140/epjc/s10052-011-1784-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1784-1

Keywords

Navigation