Skip to main content
Log in

Future cosmological evolution in f(R) gravity using two equations of state parameters

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We investigate the issues of future oscillations around the phantom divide (FOPD) for f(R) gravity. For this purpose, we introduce two types of energy density and pressure arisen from the f(R)-higher order curvature terms. One has the conventional energy density and pressure even in the beginning of the Jordan frame, whose continuity equation defines the native equation of state w DE. On the other hand, the other has the different energy density and pressure which do not obviously satisfy the continuity equation. This needs to introduce the effective equation of state w eff to describe the f(R)-fluid, in addition to the native equation of state \(\tilde{w}_{\mathrm{DE}}\). We show that the FOPD occur in f(R) gravities by introducing two types of equation of state. Finally, we point out that the singularity appears ar x=x c because the stability condition of f(R) gravity violates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Perlmutter et al. (Supernova Cosmology Project Collaboration), Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133

    Article  ADS  Google Scholar 

  2. A.G. Riess et al. (Supernova Search Team Collaboration), Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201

    Article  ADS  Google Scholar 

  3. D.N. Spergel et al. (WMAP Collaboration), Astrophys. J. Suppl. 170, 377 (2007). arXiv:astro-ph/0603449

    Article  ADS  Google Scholar 

  4. M. Tegmark et al. (SDSS Collaboration), Phys. Rev. D 69, 103501 (2004). arXiv:astro-ph/0310723

    Article  ADS  Google Scholar 

  5. D.J. Eisenstein et al. (SDSS Collaboration), Astrophys. J. 633, 560 (2005). arXiv:astro-ph/0501171

    Article  ADS  Google Scholar 

  6. B. Jain, A. Taylor, Phys. Rev. Lett. 91, 141302 (2003). arXiv:astro-ph/0306046

    Article  ADS  Google Scholar 

  7. S. Nojiri, S.D. Odintsov, eConf C0602061, 06 (2006) (Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)). arXiv:hep-th/0601213

    Google Scholar 

  8. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006). arXiv:hep-th/0603057

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010). arXiv:0805.1726 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. S. Nojiri, S.D. Odintsov, arXiv:1011.0544 [gr-qc]

  11. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010). arXiv:1002.4928 [gr-qc]

    ADS  Google Scholar 

  12. L. Pogosian, A. Silvestri, Phys. Rev. D 77, 023503 (2008)

    Article  ADS  Google Scholar 

  13. L. Pogosian, A. Silvestri, Phys. Rev. D 81, 049901 (2010). arXiv:0709.0296 [astro-ph]

    Article  ADS  Google Scholar 

  14. S. Capozziello, M. De Laurentis, V. Faraoni, arXiv:0909.4672 [gr-qc]

  15. K. Nozari, T. Azizi, Phys. Lett. B 680, 205 (2009). arXiv:0909.0351 [gr-qc]

    Article  ADS  Google Scholar 

  16. K. Bamba, C.Q. Geng, C.C. Lee, J. Cosmol. Astropart. Phys. 1011, 001 (2010). arXiv:1007.0482 [astro-ph.CO]

    Article  ADS  Google Scholar 

  17. H. Motohashi, A.A. Starobinsky, J. Yokoyama, J. Cosmol. Astropart. Phys. 1106, 006 (2011). arXiv:1101.0744 [astro-ph.CO]

    Article  ADS  Google Scholar 

  18. H.W. Lee, K.Y. Kim, Y.S. Myung, Eur. Phys. J. C 71, 1585 (2011). arXiv:1010.5556 [hep-th]

    Article  ADS  Google Scholar 

  19. W. Zimdahl, D. Pavon, Phys. Lett. B 521, 133 (2001). arXiv:astro-ph/0105479

    Article  ADS  MATH  Google Scholar 

  20. V. Paschalidis, S.M.H. Halataei, S.L. Shapiro, I. Sawicki, Class. Quantum Gravity 28, 085006 (2011). arXiv:1103.0984 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  21. B. Wang, Y.g. Gong, E. Abdalla, Phys. Lett. B 624, 141 (2005). arXiv:hep-th/0506069

    Article  ADS  Google Scholar 

  22. H. Kim, H.W. Lee, Y.S. Myung, Phys. Lett. B 632, 605 (2006). arXiv:gr-qc/0509040

    Article  ADS  Google Scholar 

  23. K.Y. Kim, H.W. Lee, Y.S. Myung, Mod. Phys. Lett. A 22, 2631 (2007). arXiv:0706.2444 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S. Zerbini, Phys. Rev. D 77, 046009 (2008). arXiv:0712.4017 [hep-th]

    Article  ADS  Google Scholar 

  25. E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S. Zerbini, Phys. Rev. D 83, 086006 (2011). arXiv:1012.2280 [hep-th]

    Article  ADS  Google Scholar 

  26. K. Bamba, C.Q. Geng, C.C. Lee, J. Cosmol. Astropart. Phys. 1008, 021 (2010). arXiv:1005.4574 [astro-ph.CO]

    Article  ADS  Google Scholar 

  27. A.V. Frolov, Phys. Rev. Lett. 101, 061103 (2008). arXiv:0803.2500 [astro-ph]

    Article  MathSciNet  ADS  Google Scholar 

  28. M.C.B. Abdalla, S. Nojiri, S.D. Odintsov, Class. Quantum Gravity 22, L35 (2005). arXiv:hep-th/0409177

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. F. Briscese, E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Lett. B 646, 105 (2007). arXiv:hep-th/0612220

    Article  ADS  Google Scholar 

  30. S. Nojiri, S.D. Odintsov, Phys. Rev. D 78, 046006 (2008). arXiv:0804.3519 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  31. K. Bamba, S. Nojiri, S.D. Odintsov, J. Cosmol. Astropart. Phys. 0810, 045 (2008). arXiv:0807.2575 [hep-th]

    Article  ADS  Google Scholar 

  32. S. Capozziello, M. De Laurentis, S. Nojiri, S.D. Odintsov, Phys. Rev. D 79, 124007 (2009). arXiv:0903.2753 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Nojiri, S.D. Odintsov, S. Tsujikawa, Phys. Rev. D 71, 063004 (2005). arXiv:hep-th/0501025

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Won Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.W., Kim, K.Y. & Myung, Y.S. Future cosmological evolution in f(R) gravity using two equations of state parameters. Eur. Phys. J. C 71, 1748 (2011). https://doi.org/10.1140/epjc/s10052-011-1748-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1748-5

Keywords

Navigation