Skip to main content
Log in

High intensity Compton scattering in a strong plane-wave field of general form

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane-wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons, an integration over one of the phase space components and the Fourier transforms of the Volkov phases. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically and numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Albert et al., ELI: Report on the results of the Grand Challenges Meeting, 27–28 April 2009. European Commission, 2009

  2. XFEL Project Groups, XFEL Technical Design Report, DESY, 2007

  3. A.I. Nikishov, V.I. Ritus, Sov. Phys. JETP 19(2), 529–541 (1964)

    MathSciNet  Google Scholar 

  4. N.I. Narozhnyi, N.B. Nikishov, V.I. Ritus, Sov. Phys. JETP 20(3), 622–629 (1965)

    Google Scholar 

  5. L.S. Brown, T.W.B. Kibble, Phys. Rev. 133(3A), A705 (1964)

    Article  ADS  Google Scholar 

  6. H. Mitter, Acta Phys. Austriaca XIV, 397–468 (1975)

    Google Scholar 

  7. V.A. Lyul’ka, Sov. Phys. JETP 40(5), 815 (1975)

    Google Scholar 

  8. M. Pardy, Int. J. Theor. Phys. 45, 647–659 (2006)

    Article  Google Scholar 

  9. J.T. Mendonça, A. Serbeto, Phys. Rev. E 83, 026406 (2011)

    Article  ADS  Google Scholar 

  10. V.G. Bagrov, D.M. Gitman, Exact Solutions of Relativistic Wave Equations (Kluwer, Dordrecht, 1990)

    MATH  Google Scholar 

  11. I.I. Goldman, Sov. Phys. JETP 19(4), 954 (1964)

    Google Scholar 

  12. R.H. Milburn, Phys. Rev. Lett. 10(3), 75–77 (1963)

    Article  ADS  Google Scholar 

  13. C. Bemporad et al., Phys. Rev. 138, B1546 (1965)

    Article  ADS  Google Scholar 

  14. A.M. Sandorfi et al., IEEE Trans. Nucl. Sci. NS-30, 3083 (1983)

    Article  ADS  Google Scholar 

  15. Ya.T. Grinchishin, M.P. Rekalo, Sov. Phys. JETP 57(5), 935–940 (1983)

    Google Scholar 

  16. V. Ravishankar et al., Phys. Rev. C 32(2), 640–642 (1985)

    Article  ADS  Google Scholar 

  17. Y.S. Tsai, Phys. Rev. D 48(1), 96–115 (1993)

    Article  ADS  Google Scholar 

  18. D.D. Meyerhofer et al., Phys. Rev. Lett. 74, 2439–2442 (1995)

    Article  ADS  Google Scholar 

  19. D.D. Meyerhofer et al., J. Opt. Soc. Am. B 13, 113 (1996)

    Article  ADS  Google Scholar 

  20. C. Bamber et al., Phys. Rev. D 60, 092004 (1999)

    Article  ADS  Google Scholar 

  21. N.B. Narozhnyi, M.S. Fofanov, JETP 83(1), 14–23 (1996)

    ADS  Google Scholar 

  22. C. Bula, K. McDonald, arXiv:hep-ph/0004117v2 (2000)

  23. A. Ilderton, Phys. Rev. Lett. 106, 020404 (2011)

    Article  ADS  Google Scholar 

  24. P. Ilderton, A. Johansson, M. Marklund, arXiv:1105.3475v1 [hep-ph] (2011)

  25. K. Yokoya, P. Chen, KEK preprint 91-2, Technical report, KEK, 1991

  26. A.F. Hartin, J. Phys. Conf. Ser. 198, 012004 (2009)

    Article  ADS  Google Scholar 

  27. D.M. Volkov, Z. Phys. 94, 250–260 (1935)

    Article  ADS  MATH  Google Scholar 

  28. G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, London, 1922)

    MATH  Google Scholar 

  29. E.M. Berestetskii, V.B. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics, 2nd edn. (Pergamon, Oxford, 1982)

    Google Scholar 

  30. V.I. Ritus, Ann. Phys. 69, 555–582 (1972)

    Article  ADS  Google Scholar 

  31. N.J. Shvets, G. Fisch, A. Pukhov, Phys. Plasmas 9(5), 2383–2392 (2002)

    Article  ADS  Google Scholar 

  32. S. Nakai, K. Mima, Rep. Prog. Phys. 67, 321 (2004)

    Article  ADS  Google Scholar 

  33. W.H. Furry, Phys. Rev. 81, 115 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Harper and Row, New York, 1962)

    MATH  Google Scholar 

  35. J.M. Jauch, F. Rohrlich, The Theory of Photons and Electrons (Springer, Berlin, 1976)

    Google Scholar 

  36. G. Moortgat-Pick, J. Phys. Conf. Ser. 198, 012002 (2009)

    Article  ADS  Google Scholar 

  37. D.M. Fradkin, E.S. Gitman, M. Shvartsman, Quantum Electrodynamics with Unstable Vacuum (Springer, Berlin, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hartin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartin, A., Moortgat-Pick, G. High intensity Compton scattering in a strong plane-wave field of general form. Eur. Phys. J. C 71, 1729 (2011). https://doi.org/10.1140/epjc/s10052-011-1729-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1729-8

Keywords

Navigation