Skip to main content
Log in

NLO QCD corrections to graviton induced deep inelastic scattering

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider Next-to-Leading-Order QCD corrections to ADD graviton exchange relevant for Deep Inelastic Scattering experiments. We calculate the relevant NLO structure functions by calculating the virtual and real corrections for a set of graviton interaction diagrams, demonstrating the expected cancellation of the UV and IR divergences. We compare the NLO and LO results at the centre-of-mass energy relevant to HERA experiments as well as for the proposed higher energy lepton–proton collider, LHeC, which has a higher fundamental scale reach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998). arXiv:hep-ph/9803315

    Article  ADS  Google Scholar 

  2. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 436, 257–263 (1998). hep-ph/9804398

    Article  ADS  Google Scholar 

  3. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999). arXiv:hep-ph/9905221

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. D.J. Kapner, T.S. Cook, E.G. Adelberger, J.H. Gundlach, B.R. Heckel, C.D. Hoyle, H.E. Swanson, Phys. Rev. Lett. 98, 021101 (2007). arXiv:hep-ph/0611184

    Article  ADS  Google Scholar 

  5. G.F. Giudice, R. Rattazzi, J.D. Wells, Nucl. Phys. B 544, 3 (1999). arXiv:hep-ph/9811291

    Article  ADS  Google Scholar 

  6. T. Han, J.D. Lykken, R.J. Zhang, Phys. Rev. D 59, 105006 (1999). arXiv:hep-ph/9811350

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Ask, in Proceedings of 32nd International Conference on High Energy Physics (ICHEP04), vol. 2 (World Scientific, Hackensack, 2005), p. 1289. arXiv:hep-ex/0410004

    Chapter  Google Scholar 

  8. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 101, 181602 (2008). arxiv:0807.3132 [hep-ex]

    Article  ADS  Google Scholar 

  9. G. Landsberg, arXiv:0808.1867 [hep-ex]

  10. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 103, 191803 (2009). arXiv:0906.4819 [hep-ex]

    Article  ADS  Google Scholar 

  11. G. Aad (ATLAS Collaboration), Phys. Lett. B 694, 327–345 (2011). arXiv:1009.5069 [hep-ex]

    Article  ADS  Google Scholar 

  12. V. Khachatryan et al. (CMS Collaboration), Phys. Rev. Lett. 105, 262001 (2010). arXiv:1010.4439 [hep-ex]

    Article  ADS  Google Scholar 

  13. R. Franceschini, G.F. Giudice, P.P. Giardino, P. Lodone, A. Strumia, arXiv:1101.4919 [hep-ph]

  14. S. Karg, M. Kramer, Q. Li, D. Zeppenfeld, Phys. Rev. D 81, 094036 (2010). arXiv:0911.5095 [hep-ph]

    Article  ADS  Google Scholar 

  15. Q. Li, C.S. Li, L.L. Yang, Phys. Rev. D 74, 056002 (2006). arXiv:hep-ph/0606045

    Article  ADS  Google Scholar 

  16. X. Gao, C.S. Li, J. Gao, J. Wang, R.J. Oakes, Phys. Rev. D 81, 036008 (2010). arXiv:0912.0199 [hep-ph]

    Article  ADS  Google Scholar 

  17. K. Hagiwara, P. Konar, Q. Li, K. Mawatari, D. Zeppenfeld, J. High Energy Phys. 0804, 019 (2008). arXiv:0801.1794 [hep-ph]

    Article  ADS  Google Scholar 

  18. J. Gao, C.S. Li, B.H. Li, C.-P. Yuan, H.X. Zhu, Phys. Rev. D 82, 014020 (2010). arXiv:1004.0876 [hep-ph]

    Article  ADS  Google Scholar 

  19. M.C. Kumar, P. Mathews, V. Ravindran, A. Tripathi, Phys. Lett. B 672, 45 (2009). arXiv:0811.1670 [hep-ph]

    Article  ADS  Google Scholar 

  20. M.C. Kumar, P. Mathews, V. Ravindran, S. Seth, J. Phys. G 38, 055001 (2011). arXiv:1004.5519 [hep-ph]

    Article  ADS  Google Scholar 

  21. P. Mathews, V.K. Ravindran, W.L. van Neerven, Nucl. Phys. B 713, 333 (2005). arXiv:hep-ph/0411018

    Article  ADS  Google Scholar 

  22. P. Lodone, V.S. Rychkov, J. High Energy Phys. 0912, 036 (2009). arXiv:0909.3519 [hep-ph]

    Article  ADS  Google Scholar 

  23. H1 Collaboration, H1prelim-10-161, https://www-h1.desy.de/psfiles/confpap/ICHEP2010/H1prelim-10-161.pdf

  24. C. Adloff et al. (H1 Collaboration). Phys. Lett. B 568, 35 (2003). arXiv:hep-ex/0305015

    Article  ADS  Google Scholar 

  25. F. Zimmermann, O. Bruning, E. Ciapala, F. Haug, J. Osborne, D. Schulte, Y. Sun, R. Tomas et al., Designs for a Linac-Ring LHeC

  26. P. Mathews, S. Raychaudhuri, K. Sridhar, Phys. Lett. B 455, 115 (1999). arXiv:hep-ph/9812486

    Article  MathSciNet  ADS  Google Scholar 

  27. C.S. Lam, B.A. Li, Phys. Rev. D 24, 3273 (1981)

    Article  ADS  Google Scholar 

  28. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  29. W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Phys. Rev. D 18, 3998 (1978)

    Article  ADS  Google Scholar 

  30. J.A.M. Vermaseren, arXiv:math-ph/0010025

  31. G. Passarino, M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979)

    Article  ADS  Google Scholar 

  32. R. Mertig, M. Bohm, A. Denner, Comput. Phys. Commun. 64, 345 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  33. E.B. Zijlstra, W.L. van Neerven, Phys. Lett. B 297, 377 (1992)

    Article  ADS  Google Scholar 

  34. C. Adloff et al. (H1 Collaboration), Eur. Phys. J. C 30, 1–32 (2003). hep-ex/0304003

    Article  ADS  Google Scholar 

  35. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Stirling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stirling, W.J., Vryonidou, E. NLO QCD corrections to graviton induced deep inelastic scattering. Eur. Phys. J. C 71, 1677 (2011). https://doi.org/10.1140/epjc/s10052-011-1677-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1677-3

Keywords

Navigation