Skip to main content
Log in

Using HERA data to determine the infrared behaviour of the BFKL amplitude

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We determine the infrared behaviour of the BFKL forward amplitude for gluon–gluon scattering. Our approach, based on the discrete pomeron solution, leads to an excellent description of the new combined inclusive HERA data at low values of x (<0.01) and at the same time determines the unintegrated gluon density inside the proton, for squared transverse momenta of the gluon less than 100 GeV2. The phases of this amplitude are sensitive to the non-perturbative gluonic dynamics and could be sensitive to the presence of Beyond-the-Standard-Model particles at very high energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.D. Aaron et al. (H1 and ZEUS Collaborations), J. High Energy Phys. 1001, 109 (2010)

    Article  ADS  Google Scholar 

  2. I.I. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

    Google Scholar 

  3. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 44, 443 (1976)

    ADS  Google Scholar 

  4. V.S. Fadin, E.A. Kuraev, L.N. Lipatov, Phys. Lett. B 60, 50 (1975)

    Article  ADS  Google Scholar 

  5. V.S. Fadin, L.N. Lipatov, Phys. Lett. B 429, 127 (1998)

    Article  ADS  Google Scholar 

  6. M. Ciafaloni, G. Camici, Phys. Lett. B 430, 349 (1998)

    Article  ADS  Google Scholar 

  7. G.P. Salam, J. High Energy Phys. 9807, 019 (1998)

    Article  ADS  Google Scholar 

  8. J. Ellis, H. Kowalski, D.A. Ross, Phys. Lett. B 668, 51 (2008)

    Article  ADS  Google Scholar 

  9. L.N. Lipatov, Sov. Phys. JETP 63, 904 (1986)

    Google Scholar 

  10. L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983)

    Article  ADS  Google Scholar 

  11. E. Levin, Nucl. Phys. B 545, 481 (1999)

    Article  ADS  Google Scholar 

  12. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  13. L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975)

    Google Scholar 

  14. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  15. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  16. J. Kwiecinski, A.D. Martin, A.M. Stasto, Phys. Rev. D 56, 3991 (1997)

    Article  ADS  Google Scholar 

  17. Y.V. Kovchegov, H. Weigert, Nucl. Phys. A 784, 188 (2007)

    Article  ADS  Google Scholar 

  18. E. Levin, Nucl. Phys. B 453, 303 (1995)

    Article  ADS  Google Scholar 

  19. S.J. Brodsky, V.S. Fadin, V.T. Kim, L.N. Lipatov, G.B. Pivovarov, JETP Lett. 76, 249 (2002)

    Article  ADS  Google Scholar 

  20. R.S. Thorne, A.D. Martin, W.J. Stirling, G. Watt, arXiv:1006.2753 [hep-ph]

  21. C. Adloff et al. (H1 Collaboration), Eur. Phys. J. C 21, 33 (2001)

    Article  ADS  Google Scholar 

  22. S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 21, 443 (2001)

    Article  ADS  Google Scholar 

  23. A.V. Kotikov, L.N. Lipatov, Nucl. Phys. B 582, 19 (2000)

    Article  ADS  Google Scholar 

  24. A.V. Kotikov, L.N. Lipatov, Nucl. Phys. B 661, 19 (2003)

    ADS  MATH  Google Scholar 

  25. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009)

    Article  ADS  Google Scholar 

  26. C.D. White, R.S. Thorne, Phys. Rev. D 75, 034005 (2007)

    Article  ADS  Google Scholar 

  27. J.R. Forshaw, D.A. Ross, Quantum Chromodynamics and the Pomeron. Cambridge Lect. Notes Phys., vol. 9 (1997), 1

    Book  Google Scholar 

  28. S. Catani, F. Hautmann, Nucl. Phys. B 427, 475 (1994)

    Article  ADS  Google Scholar 

  29. M. Ciafaloni, D. Colferai, G.P. Salam, A.M. Stasto, Phys. Lett. B 635, 320 (2006)

    Article  ADS  Google Scholar 

  30. S. Catani, M. Ciafaloni, F. Hautmann, Phys. Lett. B 307, 147 (1993)

    Article  ADS  Google Scholar 

  31. P. Zerwas, High-energy physics: Telescoping the Planck scale. Farewell Colloquium for Rolf-Dieter Heuer, 5 December 2008. http://heuer-colloquium.desy.de/e9/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Watt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalski, H., Lipatov, L.N., Ross, D.A. et al. Using HERA data to determine the infrared behaviour of the BFKL amplitude. Eur. Phys. J. C 70, 983–998 (2010). https://doi.org/10.1140/epjc/s10052-010-1500-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1500-6

Keywords

Navigation