Skip to main content
Log in

Search for top quark FCNC couplings in Z′ models at the LHC and CLIC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The top quark is the heaviest particle to date discovered, with a mass close to the electroweak symmetry breaking scale. It is expected that the top quark would be sensitive to the new physics at the TeV scale. One of the most important aspects of the top quark physics can be the investigation of the possible anomalous couplings. Here, we study the top quark flavor changing neutral current (FCNC) couplings via the extra gauge boson Z′ at the Large Hadron Collider (LHC) and the Compact Linear Collider (CLIC) energies. We calculate the total cross sections for the signal and the corresponding Standard Model (SM) background processes. For an FCNC mixing parameter x=0.2 and the sequential Z′ mass of 1 TeV, we find the single top quark FCNC production cross sections 0.38(1.76) fb at the LHC with \(\sqrt{s_{pp}}=7(14)\) TeV, respectively. For the resonance production of sequential Z′ boson and decays to single top quark at the Compact Linear Collider (CLIC) energies, including the initial state radiation and beamstrahlung effects, we find the cross section to be 27.96(0.91) fb at \(\sqrt{s_{e^{+}e^{-}}}=1(3)\) TeV, respectively. We make the analysis to investigate the parameter space (mixing-mass) through various Z′ models. It is shown that the results benefit from the flavor tagging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Langacker, Rev. Mod. Phys. 81, 1199 (2009)

    Article  ADS  Google Scholar 

  2. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  3. J. Erler et al., J. High Energy Phys. 0908, 017 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Arhrib et al., Phys. Rev. D 73, 075015 (2006)

    Article  ADS  Google Scholar 

  5. R.W. Assmann et al. (The CLIC Study Team), ed. by G. Guignard, CERN 2000-008; CERN-2003-007; E. Accomando et al. (CLIC Physics Working Group), ed. by M. Battaglia, A. De Roeck, J. Ellis, D. Schulte, CERN-2004-005

  6. P. Langacker, M. Plumacher, Phys. Rev. D 62, 013006 (2000)

    Article  ADS  Google Scholar 

  7. K. Cheung et al., Phys. Lett. B 652, 285 (2007)

    Article  ADS  Google Scholar 

  8. K. Leroux, D. London, Phys. Lett. B 526, 97 (2002)

    Article  ADS  Google Scholar 

  9. V. Barger et al., Phys. Lett. B 580, 186 (2004)

    Article  ADS  Google Scholar 

  10. V. Barger, C.W. Chiang, J. Jiang, P. Langacker, Phys. Lett. B 596, 229 (2004)

    Article  ADS  Google Scholar 

  11. V. Barger, C.W. Chiang, P. Langacker, H.S. Lee, Phys. Lett. B 598, 218 (2004)

    Article  ADS  Google Scholar 

  12. C.H. Chen, H. Hatanaka, Phys. Rev. D 73, 075003 (2006)

    Article  ADS  Google Scholar 

  13. X.G. He, G. Valencia, Phys. Rev. D 74, 013011 (2006)

    Article  ADS  Google Scholar 

  14. C.W. Chiang, N.G. Deshpande, J. Jiang, J. High Energy Phys. 0608, 075 (2006)

    Article  ADS  Google Scholar 

  15. S. Baek, J.H. Jeon, C.S. Kim, Phys. Lett. B 641, 183 (2006)

    Article  ADS  Google Scholar 

  16. V. Barger, L.L. Everett, J. Jiang, P. Langacker, T. Liu, C.E.M. Wagner, J. High Energy Phys. 0912, 048 (2009)

    Article  ADS  Google Scholar 

  17. V. Barger, L. Everett, J. Jiang, P. Langacker, T. Liu, C. Wagner, Phys. Rev. D 80, 055008 (2009)

    Article  ADS  Google Scholar 

  18. A. Cordero-Cid, G. Tavares-Velasco, J.J. Toscano, Phys. Rev. D 72, 057701 (2005)

    Article  ADS  Google Scholar 

  19. C.X. Yue, H.J. Zong, L.J. Liu, Mod. Phys. Lett. A 18, 2187 (2003)

    Article  ADS  Google Scholar 

  20. K.Y. Lee, S.C. Park, H.S. Song, C. Yu, Phys. Rev. D 63, 094010 (2001)

    Article  ADS  Google Scholar 

  21. C.X. Yue, L.N. Wang, J. Phys. G 34, 139 (2007)

    Article  ADS  Google Scholar 

  22. F. del Aguila, J.A. Aguilar-Saavedra, M. Moretti, F. Piccinini, R. Pittau, M. Treccani, Phys. Lett. B 685, 302 (2010)

    Article  ADS  Google Scholar 

  23. A. Pukhov et al., arXiv:hep-ph/9908288

  24. P. del Amo Sanchez et al. (BABAR Collaboration), arXiv:1004.5053 [hep-ex] (2010)

  25. D.M. Asner et al. (CLEO Collaboration), Phys. Rev. D 72, 012001 (2005)

    Article  ADS  Google Scholar 

  26. L.M. Zhang et al. (Belle Collaboration), Phys. Rev. Lett. 99, 131803 (2007)

    Article  ADS  Google Scholar 

  27. A. Schwartz et al. (Heavy Flavour Averaging Group), http://www.slac.stanford.edu/xorg/hfag/charm/index.html (2010)

  28. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, J. High Energy Phys. 0207, 012 (2002). arXiv:hep-ph/0201195

    Article  ADS  Google Scholar 

  29. H. Braun et al. (CLIC Study Team), CERN-OPEN-2008-021, CLIC-Note-764 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Çakır.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çakır, O., Çakır, I.T., Senol, A. et al. Search for top quark FCNC couplings in Z′ models at the LHC and CLIC. Eur. Phys. J. C 70, 295–303 (2010). https://doi.org/10.1140/epjc/s10052-010-1474-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1474-4

Keywords

Navigation